Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Физико-химические аспекты и биологическая активность конъюгатов нанодисперсного диоксида церия с сывороточным альбумином человека

https://doi.org/10.17586/2220-8054-2025-16-5-606-618

Аннотация

Нанодисперсный диоксид церия (СеО2) обладает уникальной каталитической активностью в реакциях с участием активных форм кислорода (АФК), играющих роль медиаторов ключевых сигнальных путей. Альбумин является наиболее распространенным белком плазмы крови, взаимодействие с которым может влиять как на свойства наночастиц СеО2, так и на саму биомолекулу. На модели эмбриональных фибробластов легкого человека (in vitro) исследовано, как конъюгация нанодисперсного СеО2 с альбумином влияет на ряд биохимических параметров: жизнеспособность клеток, уровень внутриклеточных АФК, экспрессию NOX4, NRF2 и NF-κB, окислительное повреждение и репарацию ДНК, апоптоз, пролиферацию клеток и аутофагию. Результаты демонстрируют, что связывание диоксида церия с альбумином изменяет его физико-химические свойства, способствуя более эффективному поглощению наночастиц СеО2 клетками. Конъюгация СеО2 с белком ослабляет влияние наночастиц на внутриклеточный баланс АФК и митохондриальный мембранный потенциал. Примечательно, что конъюгаты СеО2 с альбумином индуцируют более сильную активацию NOX4, что приводит к повышенному генотоксическому стрессу. Однако этот эффект компенсировался более эффективной активацией систем репарации ДНК по сравнению с немодифицированным диоксидом церия. Помимо этого, конъюгаты наночастиц СеО2 с белком модулировали сигнальные пути, усиливая подавление провоспалительного каскада NF-κB и активируя процессы аутофагии. Таким образом, конъюгация наночастиц СеО2 с альбумином не только снижает их цитотоксичность, но и усиливает противовоспалительный и регенеративный потенциалы диоксида церия.

Об авторах

Е. В. Проскурнина
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


С. В. Костюк
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Россия


М. М. Созарукова
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Е. С. Ершова
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Россия


Н. Н. Вейко
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Petrovsky Russian Scientific Center of Surgery, Institute of Longevity with a Clinic of Rehabilitation and Preventive Medicine
Россия


М. А. Попков
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Э. В. Костюк
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


А. В. Мартынов
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


В. К. Иванов
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Список литературы

1. Korsvik C., Patil S., Seal S. et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, 10, P. 1056.

2. Ivanov V.K., Usatenko A.V., Shcherbakov A.B. Antioxidant activity of nanocrystalline ceria to anthocyanins. Russ. J. Inorg. Chem., 2009, 54(10), P. 1522–1527.

3. Pirmohamed T., Dowding J.M., Singh S. et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46(16), P. 2736.

4. Asati A., Santra S., Kaittanis C. et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chemie Int. Ed., 2009, 48(13), P. 2308–2312.

5. Liu B., Huang Z., Liu J. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection. Nanoscale, 2016, 8(28), P. 13562–13567.

6. Yao T., Tian Z., Zhang Y. et al. Phosphatase-like Activity of Porous Nanorods of CeO2 for the Highly Stabilized Dephosphorylation under Interferences. ACS Appl. Mater. Interfaces, 2019, 11(1), P. 195–201.

7. Tian Z., Yao T., Qu C. et al. Photolyase-Like Catalytic Behavior of CeO2. Nano Lett., 2019, 19(11), P. 8270–8277.

8. Khulbe K., Karmakar K., Ghosh S. et al. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl. Bio Mater., 2020, 3(7), P. 4316–4328.

9. Xu F., Lu Q., Huang P.-J.J. et al. Nanoceria as a DNase I mimicking nanozyme. Chem. Commun., 2019, 55(88), P. 13215–13218.

10. Wu N., Liu T., Tian M. et al. Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’ (Review). Mol. Med. Rep., 2023, 29(2), P. 24.

11. Tao C., Chuah Y.J., Xu C. et al. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J. Mater. Chem. B, 2019, 7(3), P. 357–367.

12. Qu N., Song K., Ji Y. et al. Albumin Nanoparticle-Based Drug Delivery Systems. Int. J. Nanomedicine, 2024, 19, P. 6945–6980.

13. Tincu C.-E., Andrit¸oiu C.V., Popa M. et al. Recent Advancements and Strategies for Overcoming the Blood–Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel), 2023, 15(19), P. 3969.

14. Butterfield A.D., Wang B., Wu P. et al. Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria may Exert Its Beneficial and Deleterious Effects In Vivo. J. Nanomed. Nanotechnol., 2020, 11(4), P. 546.

15. Fanciullino R., Ciccolini J., Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nanoalbumin-bound drugs. Crit. Rev. Oncol. Hematol., 2013, 88(3), P. 504–513.

16. Zhu Y., Xue J., Chen W. et al. Albumin-biomineralized nanoparticles to synergize phototherapy and immunotherapy against melanoma. J. Control. Release, 2020, 322, P. 300–311.

17. Gou Y., Zhang Z., Qi J. et al. Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin. J. Inorg. Biochem., 2015, 153, P. 13–22.

18. Kim D., Amatya R., Hwang S. et al. BSA-Silver Nanoparticles: A Potential Multimodal Therapeutics for Conventional and Photothermal Treatment of Skin Cancer. Pharmaceutics, 2021, 13(4), P. 575.

19. Jaiswal V.D., Pangam D.S., Dongre P.M. Biophysical study of cisplatin loaded albumin-gold nanoparticle and its interaction with glycans of gp60 receptor. Int. J. Biol. Macromol., 2023, 231, P. 123368.

20. Korolev D., Shumilo M., Shulmeyster G. et al. Hemolytic Activity, Cytotoxicity, and Antimicrobial Effects of Human Albumin- and Polysorbate80-Coated Silver Nanoparticles. Nanomaterials, 2021, 11(6), P. 1484.

21. Park H.-Y., Chung C., Eiken M.K. et al. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Front. Toxicol., 2023, 5, P. 1081753.

22. Chen J.L.-Y., Yang S.-J., Pan C.-K. et al. Cisplatin and Albumin-Based Gold–Cisplatin Nanoparticles Enhance Ablative Radiation Therapy– Induced Antitumor Immunity in Local and Distant Tumor Microenvironment. Int. J. Radiat. Oncol., 2023, 116(5), P. 1135–1149.

23. Gou Y., Zhang Y., Qi J. et al. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin. J. Inorg. Biochem., 2015, 144, P. 47–55.

24. He C., Xie M., Hong F. et al. A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim. Acta, 2016, 222, P. 1709–1715.

25. Janani B., Raju L.L., Thomas A.M. et al. Impact of bovine serum albumin – A protein corona on toxicity of ZnO NPs in environmental model systems of plant, bacteria, algae and crustaceans. Chemosphere, 2021, 270, P. 128629.

26. Bhushan B., Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater. Chem. B, 2015, 3(24), P. 4843–4852.

27. Yang Z., Luo S., Zeng Y. et al. Albumin-Mediated Biomineralization of Shape-Controllable and Biocompatible Ceria Nanomaterials. ACS Appl. Mater. Interfaces, 2017, 9(8), P. 6839–6848.

28. Yeni Y., Genc S., Nadaroglu H. et al. Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. Naunyn. Schmiedebergs. Arch. Pharmacol., 2025, 398(5), P. 5147–5156.

29. Khoshgozaran Roudbaneh S.Z., Kahbasi S., Sohrabi M.J. et al. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. J. Mol. Liq., 2019, 296, P. 111839.

30. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S. et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Mater. Res. Express, 2017, 4(5), P. 055008.

31. Creed S., McKenzie M. Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Methods Mol. Biol., 2019, 1928, P. 69–76.

32. Luik A.I., Naboka Y.N., Mogilevich S.E. et al. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 1998, 54(10), P. 1503– 1507.

33. Velichko E., Makarov S., Nepomnyashchaya E. et al. Molecular Aggregation in Immune System Activation Studied by Dynamic Light Scattering. Biology (Basel), 2020, 9(6), P. 123.

34. Bardik V., Gotsulskii V., Pavlov E. et al. Light scattering study of human serum albumin in pre-denaturation: Relation to dynamic transition in water at 42◦C. J. Mol. Liq., 2012, 176, P. 60–64.

35. Liu Y., Yang Z., Zhang X. et al. Shape/Crystal Facet of Ceria Induced Well-Dispersed and Stable Au Nanoparticles for the Selective Hydrogenation of Phenylacetylene. Catal. Letters, 2019, 149(2), P. 361–372.

36. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. Peroxidase-like Activity of CeO2 Nanozymes: Particle Size and Chemical Environment Matter. Molecules, 2023, 28(9), P. 3811.

37. Sozarukova M.M., Kochneva E.M., Proskurnina E.V. et al. Albumin Retains Its Transport Function after Interaction with Cerium Dioxide Nanoparticles. ACS Biomater. Sci. Eng., 2023, 9(12), P. 6759–6772.

38. Pustulka S.M., Ling K., Pish S.L. et al. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS Appl. Mater. Interfaces, 2020, 12(43), P. 48284–48295.

39. Lundqvist M., Stigler J., Elia G. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci., 2008, 105(38), P. 14265–14270.

40. Chaudhary Y.S., Panigrahi S., Nayak S. et al. Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light. J. Mater. Chem., 2010, 20(12), P. 2381.

41. Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 2000, 74(3–5), P. 141–173.

42. Diaconeasa Z., Barbu-Tudoran L., Coman C. et al. Cerium oxide nanoparticles and its cytotoxicity human lung cancer cells. Rom. Biotechnol. Lett., 2015, 20, P. 10679.

43. Tang J., Luan F., Chen X. Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg. Med. Chem., 2006, 14(9), P. 3210–3217.

44. Usoltsev D., Sitnikova V., Kajava A. et al. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules, 2019, 9(8), P. 359.

45. Umezawa M., Itano R., Sakaguchi N. et al. Infrared spectroscopy analysis determining secondary structure change in albumin by cerium oxide nanoparticles. Front. Toxicol., 2023, 5, P. 1237819.

46. Kogelheide F., Kartaschew K., Strack M. et al. FTIR spectroscopy of cysteine as a ready-to-use method for the investigation of plasma-induced chemical modifications of macromolecules. J. Phys. D. Appl. Phys., 2016, 49(8), P. 084004.

47. Patel V., Jose L., Philippot G. et al. Fluoride-assisted detection of glutathione by surface Ce3+/Ce4+ engineered nanoceria. J. Mater. Chem. B, 2022, 10(47), P. 9855–9868.

48. Proskurnina E.V., Sozarukova M.M., Ershova E.S. et al. Lipid Coating Modulates Effects of Nanoceria on Oxidative Metabolism in Human Embryonic Lung Fibroblasts: A Case of Cardiolipin. Biomolecules, 2025, 15(1), P. 53.

49. Yuan D., Shen Z., Liu R. et al. Study on the binding of cerium to bovine serum albumin. J. Biochem. Mol. Toxicol., 2011, 25(4), P. 263–268.

50. Simon-V ´ azquez R., Lozano-Fern ´ andez T., Peleteiro-Olmedo M. et al. Conformational changes in human plasma proteins induced by metal oxide ´ nanoparticles. Colloids Surfaces B Biointerfaces, 2014, 113, P. 198–206.

51. Liu W., Rose J., Plantevin S. et al. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale, 2013, 5(4), P. 1658.

52. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E. et al. Antioxidant Activity of Conjugates of Cerium Dioxide Nanoparticles with Human Serum Albumin Isolated from Biological Fluids. Russ. J. Inorg. Chem., 2023, 68(10), P. 1495–1502.


Дополнительные файлы

Рецензия

Для цитирования:


Проскурнина Е.В., Костюк С.В., Созарукова М.М., Ершова Е.С., Вейко Н.Н., Попков М.А., Костюк Э.В., Мартынов А.В., Иванов В.К. Физико-химические аспекты и биологическая активность конъюгатов нанодисперсного диоксида церия с сывороточным альбумином человека. Наносистемы: физика, химия, математика. 2025;16(5):606-618. https://doi.org/10.17586/2220-8054-2025-16-5-606-618

For citation:


Proskurnina E.V., Kostyuk S.V., Sozarukova M.M., Ershova E.S., Veiko N.N., Popkov M.A., Kostyuk E.V., Martynov A.V., Ivanov V.K. Physicochemical aspects and cellular effects of nanoceria-human serum albumin conjugates. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):606-618. https://doi.org/10.17586/2220-8054-2025-16-5-606-618

Просмотров: 28


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)