Formation of highly dispersed V–C–O–Ni and V–N–O–Ni compositions under lowtemperature nitrogen plasma conditions
https://doi.org/10.17586/2220-8054-2025-16-5-628-639
Abstract
Under conditions of plasma-chemical synthesis in low-temperature (4000-6000 ◦C) nitrogen plasma, ultrafine and nanocrystalline powder compositions VC–Ni and VN–Ni were obtained from mechanical mixtures containing vanadium carbide or nitride with metallic nickel in the ratio 1:1. X-ray studies have shown that the obtained plasma-chemical particles contain vanadium oxycarbides and oxynitrides, metallic nickel, and are also characterized by the presence of oxide phases of the V–O system. Electron microscopic studies of nanocrystalline fractions of VC–Ni and VN–Ni powder compositions using high-resolution transmission electron microscopy visualized the structure of the obtained particles. Using the fast Fourier transform, it was shown that the refractory components and metallic nickel form individual nanometer-scale particles that do not come into contact with each other. A chemical mechanism of the organization of highly dispersed mechanical mixtures V–C–O–Ni and V–N–O–Ni under conditions of quenching processes in a turbulent flow of nitrogen gas proceeding at a speed of 105 ◦C/s has been formulated on the basis of the performed research.
Keywords
About the Authors
Yu. A. AvdeevaRussian Federation
Yuliya A. Avdeeva
Pervomaiskaya Street, 91, Ekaterinburg, 620990
I. V. Luzhkova
Russian Federation
Irina V. Luzhkova
Pervomaiskaya Street, 91, Ekaterinburg, 620990
A. M. Murzakaev
Russian Federation
Aidar M. Murzakaev
Amundsen Street, 106, Ekaterinburg, 620216
A. N. Ermakov
Russian Federation
Alexey N. Ermakov
Pervomaiskaya Street, 91, Ekaterinburg, 620990
References
1. Ganji O., Sajjadi S.A., Yang Z.G., Mirjalili M., Najari M.R. On the formation and properties of chromium carbide and vanadium carbide coatings produced on W1 tool steel through thermal reactive diffusion (TRD). Ceramics Int., 2020, 46 (16), P. 25320–25329.
2. Zhukov M.F., Cherskiy I.N., Cherepanov A.N., Konovalov N.A., Saburov V.P., Pavlenko N.A., Galevskiy G.V., Andrianova O.A., Krushenko G.G. Hardening of metallic polymeric and elastomer materials by ultrafine powders of plasma-chemical synthesis. Novosibirsk: Nauka, 1999. 307 p.
3. Carroll K. Core-shell nanoparticles: synthesis, design, and characterization. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Richmond, Virginia: Virginia Commonwealth University, 2010. 209 p.
4. Pang W., Li Y., De Luca L.T., Liang D., Qin Z., Liu X., Xu H., Fan X. Effect of metal nanopowders on the performance of solid rocket propellants: a review. Nanomaterials, 2021, 11 (10), 2749.
5. Zaki Z.I., El-Sadek M.H., Ali H.H., Ahmed H. Synthesis of vanadium carbide by mechanical activation assisted carbothermic reduction. Materials, 2020, 13 (19), 4408.
6. Chalmers B. Principles of solidification. John Wiley and Sons, Springer: New York, Dordrecht, Heidelberg, London, 1964. 319 p.
7. Samsonov G.V., Upadhaya G.Sh., Neshpor V.S. Physical Materials Science of Carbides. Kyiv: Naukova Dumka, 1974. 455 p. (In Russian)
8. Samsonov G.V. Nitrides. Kyiv: Naukova Dumka, 1969. 380 p. (In Russian)
9. Krzhizhanovsky R.E., Shtern Z.Yu. Thermophysical properties of non-metallic materials (carbides). Handbook. Leningrad: Energy, 1976. 120 p. (In Russian)
10. Kosolapova T.Ya. Handbook of high temperature compounds: properties, production, applications. New York, Washington, Philadelphia, London: CRC Press, 1990. 958 p.
11. Voitovich R.F. Oxidation of carbides and nitrides. Kyiv: Naukova Dumka, 1981. 192 p. (In Russian)
12. Storozhenko P.A., Guseinov Sh.L., Malashin S.I. Nanodispersed Powders: Synthesis Methods and Practical Applications. Nanotechnologies in Russia, 2009, 4, P. 262–274.
13. Sadovnikov S.I., Gusev A.I. Effect of particle size and specific surface area on the determination of the density of nanocrystalline silver sulfide Ag2S powders. Physics of the Solid State, 2018, 60, P. 877–881.
14. Shveikin G.P., Alyamovsky S.I., Zainulin Yu.G., Gusev A.I., Gubanov V.A., Kurmaev E.Z. Compounds of variable composition and their solid solutions. UC USSR Academy of Sciences, Sverdlovsk, 1984, 292 p. (In Russian)
15. Schonberg N. The tungsten carbide and nicel arsenide structures. ¨ Acta Metallica, 1954, 2, P. 427–432.
16. Ermakov A.N., Luzhkova I.V., Avdeeva Yu.A., Murzakaev A.M., Zainulin Yu.G., Dobrinsky E.K. Formation of complex titanium-nickel nitride Ti0.7Ni0.3N in the ”core-shell” structure of TiN – Ni. Int. J. of Refractory Metals and Hard Materials, 2019, 84, 104996.
17. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Mechanism of formation of nanocrystalline particles with core-shell structure based on titanium oxynitrides with nickel in the process of plasma-chemical synthesis of TiNi in a low-temperature nitrogen plasma. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (2), P. 212–219.
18. Carbon. Access URL: https://prosto-o-slognom.ru/chimia/506uglerod_C.html
19. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Plasmachemical synthesis of TiC–Mo–Co nanoparticles with a core–shell structure in a lowtemperature nitrogen plasma. Russian Metallurgy, 2022, 9, P. 1019–1026.
20. Morokhov I.D., Trusov L.I., Chizhik S.P. Ultradisperse metallic media. Moscow: Atomizdat, 1977, 264 p. (In Russian)
21. Andrievskiy R.A. The synthesis and properties of nanocrystalline refractory compounds. Russian Chemical Reviews, 1994, 63 (5), P. 411–427.
22. Gusev A.I. Nanocrystalline materials: methods of production and properties. Ekaterinburg: Publishing house of NIS UB RAS, 1998, 199 p. (In Russian)
23. Polovov I.B., Volkovich V.A., Shipulin S.A., Maslov S.V., Khokhryakov A.A., Vasin B.D., Griffiths T.R., Thied R.C. Chemistry of vanadium chlorides in molten salts: An electronic absorption spectroscopy study. J. of Molecular Liquids, 2003, 103–104, P. 387–394.
24. Polak L. Elementary chemical processes and kinetics in a non-equilibrium and quasi-equilibrium plasma. Pure and Applied Chemistry, 1974, 39 (3), P. 307–342.
25. Knunyants I.L. Chemical Encyclopedia: in 5 volumes. Vol. 3. Moscow: Soviet Encyclopedia, 1992. 639 p. (In Russian)
26. Avdeeva Yu.A., Luzhkova I.V., Murzakaev A.M., Ermakov A.N. Plasma-chemical synthesis of highly dispersed core-shell structures from a mechanical mixture of titanium carbide and titanium nickelide. Powder Metallurgy and Functional Coatings, 2024, 18 (3), P. 5–15.
27. Gusev A.I. Non-stoichiometry, disorder, short-range and long-range order in a solid. M.: FIZMATLIT, 2007. 856 p. (In Russian)
28. Samokhin A.V., Polyakov S., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of synthesis of nanopowders in a plasma reactor jet type. I. Statement of the problem and model validation. Fizika i khimiya obrabotki materialov, 2013, 6, P. 40–46. (In Russian)
29. Samokhin A.V., Polyakov S., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. II. Nanoparticles formation. Inorganic Materials: Applied Research, 2014, 5 (3), P. 224–229.
30. Shiryaeva L.S., Gorbuzova A.K., Galevsky G.V. Production and application of titanium carbide (assessment, trends, forecasts). Scientific and Technical J. of the St. Petersburg State Polytechnic University, 2014, 2 (195), P. 100–107. (In Russian)
Supplementary files
Review
For citations:
Avdeeva Yu.A., Luzhkova I.V., Murzakaev A.M., Ermakov A.N. Formation of highly dispersed V–C–O–Ni and V–N–O–Ni compositions under lowtemperature nitrogen plasma conditions. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):628-639. https://doi.org/10.17586/2220-8054-2025-16-5-628-639
