Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Clinoptilolite zeolite mechanochemically modified with polyethylene glycol for the preparation of oil sorbents

https://doi.org/10.17586/2220-8054-2025-16-5-640-649

Abstract

The effect of ’soft’ mechanochemical activation in an air atmosphere of a mixture of clinoptilolite zeolite rocks with 10 and 20 wt % polyethylene glycol PEG-4000 on structure, physical properties, and oil adsorption properties was investigated. The doses of the applied mechanical energy were 2.16 and 5.04 kJ·g −1 . It is shown that clinoptilolite rock modified by 10 wt % polyethylene glycol with a mechanical energy dose of 5.04 kJ·g −1 and clinoptilolite rock modified by 20 wt % of this polymer with an energy dose of 2.16 kJ·g −1 have an oil capacity on the solid surface of 1.4 g·g −1 . We compared our results with similar data for polymer modifiers such as polyvinyl alcohol and polyacrylamide. We identified regular changes in the structure that can be used as a predictive assessment for the expected increase in the oil capacity of organomineral sorbents. It was found that in the IR spectra of these samples the ratio of intensities of absorption bands due to valence vibrations of siloxane and hydroxyl groups is not less than 3.2, and the porosity is not less than 72 %. The correlation between oil capacity and polymer content, porosity, and structural changes was revealed.

About the Author

O. N. Dabizha
Transbaikal State University; Branch of the Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Olga N. Dabizha

Aleksandro-Zavodskaya, 30, Chita, 672039; Makarova emb., 2, St. Petersburg, 199034



References

1. Kakhki M.R., Zirjanizadeh S., Mohammadpoor M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: in time of artificial intelligence. J. Mater. Sci., 2023, 58, P. 10555–10575.

2. Shojaeifar N., Mirzayi B., Saboor F.H. Highly efficient removal of MTBE using natural nanoporous adsorbents. Int. J. Environ. Sci. Technol., 2024, 21, P. 6553–6566.

3. Grifasi N., Ziantoni B., Fino D., Piumetti M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res., 2024, PMID: 38780851.

4. Alsawalha M. Overview of current and future perspectives of Saudi Arabian natural clinoptilolite zeolite: a case review. Hindawi. J. of Chemistry, 2019, 3153471, 16 p.

5. Charkhi A., Kazemian H., Kazemeini M. Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technology, 2010, 203 (2), P. 389–396.

6. Kuznetsov P.S., Dementiev K.I., Palankoev T.A., Kalmykova D.S., Malyavin V.V., Sagaradze A., Maksimov A.L. Synthesis of highly active nanozeolites using methods of mechanical milling, recrystallization, and dealumination (a review). Pet. Chem., 2021, 61, P. 649–662.

7. Mukhtar N.Z.F., Borhan M.Z., Rusop M., Abdullah S. Nanozeolite produced by wet milling at different milling time. In: Gaol F., Webb J. (eds) Recent trends in nanotechnology and materials science. Engineering Materials. Springer, Cham. 2014.

8. Seifi L., Torabian A., Kazemian H., Nabi R., Azimi A.A., Farhadi F., Nazmara Sh. Kinetic study of BTEX removal using granulated surfactantmodified natural zeolites nanoparticles. Water Air Soil Pollut., 2011, 219, P. 443–457.

9. Amirsoleimani M., Khalilzadeh M.A., Zareyee D. Nano-sized clinoptilolite as a green catalyst for the rapid and chemoselective N-formylation of amines. Reac Kinet Mech Cat., 2020, 131, P. 859–873.

10. Sydorchuk V., Vasylechko V.O., Khyzhun O., Gryshchouk G.V, Khalameida S., Vasylechko L. Effect of high-energy milling on the structure, some physicochemical and photocatalytic properties of clinoptilolite. Applied Catalysis A-general, 2021, 610, 117930.

11. Dabizha O.N., Derbeneva T.V., Khamova T.V., Shilova O.A. Controlling the sorption activity of clinoptilolites with mechanical activation. Inorg. mater., 2021, 57 (4), P. 399–408.

12. Jha V.K., Hayashi S. Modification on natural clinoptilolite zeolite for its NH+ 4 retention capacity. J. Hazard Mater., 2009, 169 (1–3), P. 29–35.

13. Buzimov A.Y., Kulkov S.N., Gomze L.A., G ¨ eber R., Kocserha I. Effect of mechanical treatment on the structure and properties of natural zeolite. ´ Inorg. Mater. Appl. Res., 2018, 9, P. 910–915.

14. Bohacs K., Faitli J., Bok ´ anyi L., Mucsi G. Control of natural zeolite properties by mechanical activation in stirred media mill. ´ Archives of Metallurgy and Materials, 2017, 62 (2), P. 1399–1406.

15. Natsagdorj N., Lkhagvasuren N., Munkhjargal B., Temuujin J. Influence of co-milling oxide physical properties on the structural changes of natural clinoptilolite zeolites. Mong. J. Chem., 2023, 24 (50), P. 27–32.

16. Majano G., Borchardt L., Mitchell S., Valtchev V., Perez-Ram ´ ´ırez J. Rediscovering zeolite mechanochemistry – A pathway beyond current synthesis and modification boundaries. Microporous Mesoporous Mater., 2014, 194, P. 106–114.

17. Rainer D.N., Morris R.E. New avenues for mechanochemistry in zeolite science. Dalton Trans., 2021, 50 (26), P. 8995–9009.

18. Mohammed A.N. Adsorption efficiency of chitosan/clinoptilolite (CS/CZ) composite for effective removal of Cd+2 and Cr+6 ions from wastewater effluents of dairy cattle farms. Environ. Monit. Assess, 2024, 196, 611.

19. Miao J.L., Ren J.Q., Li H.J., Wu D.G., Wu Y.C. Mesoporous crosslinked chitosan-activated clinoptilolite biocomposite for the removal of anionic and cationic dyes. Colloids Surf B Biointerfaces, 2022, 216, 112579.

20. Li Z.C., Su M.Y., Yuan X.Y., Lv H.Q., Feng R., Wu L.J., Gao X.P., An Y.X., Li Z.W., Li M.Y., Zhao G.M., Wang X.P. Green fabrication of modified lignin/zeolite/chitosan-based composite membranes for preservation of perishable foods. Food Chem. 2024, 460 (3), 140713.

21. Yıldız Yigit M., Baran E.S., Moral C¸ .K. A polymer – zeolite composite for mixed metal removal from aqueous solution. ˇ Water Sci. Technol., 2021, 83 (5), P. 1152–1166.

22. Baybas¸ D., Ulusoy U. Polyacrylamide-clinoptilolite/Y-zeolite composites: characterization and adsorptive features for terbium. J. Hazard Mater., 2011, 187 (1–3), P. 241–249.

23. Yu Y., Shapter J.G., Popelka-Filcoff R., Bennett J.W., Ellis A.V. Copper removal using bio-inspired polydopamine coated natural zeolites. J. Hazard Mater., 2014, 273, P. 174–182.

24. Motsa M.M., Mamba B.B., Thwala J.M., Msagati T.A. Preparation, characterization, and application of polypropylene-clinoptilolite composites for the selective adsorption of lead from aqueous media. J. Colloid Interface Sci., 2011, 359 (1), P. 210–219.

25. Mollahosseini A., Rastegari M., Panahi-Dehghan M. Electrospun polyacrylonitrile/clinoptilolite coating for SPME of PAHs from water samples. J. Chromatogr. Sci., 2022, 60 (4), P. 401–407.

26. Olad A., Ahmadi Sh., Rashidzadeh A. Removal of Nickel (II) from aqueous solutions with polypyrrole modified clinoptilolite: kinetic and isotherm studies. Desalination and water Treatment., 2013, 51 (37–39), P. 7172–7180.

27. Yazdanbakhsh F., Alizadehgiashi M., Sawada J.A., Kuznicki S.M. A clinoptilolite-PDMS mixed-matrix membrane for high temperature water softening. Water Sci. Technol., 2016, 73 (6), P. 1409–1417.

28. Assar E., Meysami A., Zare M. Morphology analysis and characterization of clinoptilolite/polyvinylpyrrolidone-zeolite composite nanofibers. J. of Mater. Eng. and Perform., 2020, 29, P. 4233–4240.

29. Savchenko I., Yanovska E., Sternik D., Kychkyruk O. Sorption properties of porous aluminosilicate minerals of Ukraine, in situ modified by poly[5-(p-nitrophenylazo)-8-methacryloxyquinoline] of toxic metal ions. Appl. Nanosci., 2023, 13, P. 7555–7567.

30. Pazarc¸eviren E., Erdemli O., Keskin D., Tezcaner A. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. ¨ J. Biomater. Appl., 2017, 31 (8), P. 1148–1168.

31. Jia B., Bing L., Xu B., Sun J., Bai S. Fabrication of functionalized UiO-66 anchored on disorderly layered clinoptilolite via surfactant-assisted induction for selective adsorption of CO2 and CH4. Langmuir, 2022, 38 (48), P. 14644–14655.

32. Sadeghinia A., Soltani S., Aghazadeh M., Khalilifard J., Davaran S. Design and fabrication of clinoptilolite-nanohydroxyapatite/chitosan-gelatin composite scaffold and evaluation of its effects on bone tissue engineering. J. Biomed. Mater. Res. A, 2020, 108 (2), P. 221–233.

33. Demirkiran A.R., Fullen M.A., Williams C.D. Comparative analysis of the physicochemical and oil adsorption characteristics of clinoptilolites from Turkey and the USA. Oxidation Communications, 2016, 39 (1–2), P. 787–807.

34. Kalbuadi D.N., Goenadi D.H., Santi L.P., Nurtjahja, L.R. The potential use of natural clinoptilolite zeolite for crude oil spill removal from sea water. J. of Minerals and Materials Characterization and Engineering, 2019, 7, P. 446–453.

35. Bandura L., Woszuk A., Kolodynska D., Franus W. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals, 2017, 7, P. 1–25.

36. Muir B., Bajda T. Organically modified zeolites in petroleum compounds spill cleanup – Production, efficiency, utilization. Fuel Processing Technology, 2016, 149, P. 153–162.

37. Bugatti V., Bernardo P., Clarizia G., Viscusi G., Vertuccio L., Gorrasi G. Ball milling to produce composites based of natural clinoptilolite as a carrier of salicylate in bio-based PA11. Polymers (Basel), 2019, 11 (4), 634.

38. Dabizha O.N., Khamova T.V., Shilova O.A. Mechanochemical modification of zeolite rocks with polyvinyl alcohol for increasing their oil sorptium capacity. Inorg. mater., 2022. 58 (12), P. 1335–1347.

39. Method of production of organomineral sorbents (versions), Patent. 2184607 Russia: MPK B 01 J 20/26, 20/12, 20/32, C 02 F 1/56, Shapkin N.P., N 2000121520/04, Issue N , p. 8.

40. Dabizha O.N., Khamova T.V., Shilova O.A. Mechanochemical modification of zeolite rocks with polyacrylamide for the production of oil sorbents. Inorg. mater., 2023, 59 (10), P. 1127–1139.

41. Fang Q., Liu X., Wang Na, Ma Chi, Yang F. The effect of zeolite particle modified by PEG on rubber composite properties. Sci. Eng. Compos. Mater., 2015, 22 (6), P. 607–612.

42. Toommee S., Pratumpong P. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films. Results in Phisycs, 2018, 9, P. 71–77.

43. Choopani L., Salehi M.M., Mashhadimoslem H., Khosrowshahi M.S., Rezakazemi M., AlHammadi A.A., Elkamel A., Maleki A. Removal of organic contamination from wastewater using granular activated carbon modified – Polyethylene glycol: Characterization, kinetics and isotherm study. PLoS ONE, 2024, 19 (7), e0304684.

44. Gao N., Du J., Yang W., Sun B., Li J., Xia T., Li Y., Yang Ch., Liu X. Bio-based sunflower carbon/polyethylene glycol shape-stabilized phase change materials for thermal energy storage. RSC Adv., 2024, 14, 24141.

45. Detrekoy E.J., Jacobs P.A., Kallo D., Uytterhoeven J.B. The nature of catalytic activity of hydroxyl groups in clinoptilolite. J. of Catalysis, 1973, 32, P. 442–452.


Supplementary files

Review

For citations:


Dabizha O.N. Clinoptilolite zeolite mechanochemically modified with polyethylene glycol for the preparation of oil sorbents. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):640-649. https://doi.org/10.17586/2220-8054-2025-16-5-640-649

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)