Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Controlled release of homogeneous polypeptides from carbon nanotubes with varying PH: molecular dynamics simulation

https://doi.org/10.17586/2220-8054-2025-16-5-650-659

Abstract

Using molecular dynamics simulation at different pH levels, changes in the conformations of homogeneous polypeptides located singly or in pairs inside a carbon nanotube were studied. The radial distributions of the density of polypeptide atoms, the distribution of macrochain atoms along the nanotube axis, and the dependences of various components of the potential energy of the nanosystem were calculated. At the isoelectric point, the polypeptides were located in the central part of the carbon nanotube, spreading out along its walls. As the pH level deviated from the isoelectric point, the polypeptide located singly inside the carbon nanotube first unfolded and stretched along its axis, and when almost all links of the macromolecule acquired an electric charge, it exited the nanotube. Polypeptides located in pairs inside the carbon nanotube repelled each other with a change in the pH value and shifted to opposite ends of the nanotube, being released from it.

About the Author

N. Yu. Kruchinin
Orenburg State University, Center of Laser and Informational Biophysics
Russian Federation

Nikita Yu. Kruchinin

Orenburg



References

1. Balasubramanian K., Burghard M. Biosensors based on carbon nanotubes. Anal Bioanal Chem, 2006, 385, P. 452–468.

2. Qi H., Mader E., Liu J. Unique water sensors based on carbon nanotube–cellulose composites. ¨ Sensors and Actuators B: Chemical, 2013, 185, P. 225–230.

3. Tilmaciu C-M., Morris M.C. Carbon nanotube biosensors. Front. Chem., 2015, 3, P. 59.

4. Ferrier D.C., Honeychurch K.C. Carbon nanotube (CNT)-based biosensors. Biosensors, 2021, 11, P. 486.

5. Ranjbari S., Bolourinezhad M., Kesharwani P., Rezayi M, Sahebkar A. Applications of carbon nanotube biosensors: Sensing the future. Journal of Drug Delivery Science and Technology, 2024, 97, P. 105747.

6. Dewey H.M., Lamb A., Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. Nanoscale, 2024, 16, P. 16344–16375.

7. Gazzato L., Frasconi M. Carbon nanotubes and their composites for flexible electrochemical biosensors. Analysis & Sensing, 2025, 5, P. e202400038.

8. Bianco A., Kostarelos K., Prato M. Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 2005, 9(6), P. 674– 679.

9. Meng X., Zhang Z., Li L. Micro/nano needles for advanced drug delivery. Progress in Natural Science: Materials International, 2020, 30(5), P. 589–596.

10. Alshawwa S.Z., Kassem A.A., Farid R.M., Mostafa S.K., Labib G.S. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022, 14, P. 883.

11. Roxbury D., Zhang S., Mittal J., DeGrado W.F., Jagota A. Structural stability and binding strength of a designed peptide-carbon nanotube hybrid. J. Phys. Chem. C, 2013, 117, P. 26255–26261.

12. Wang H., Michielssens S., Moors S.L.C., Ceulemans A. Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube. Nano Res., 2009, 2, P. 945–954.

13. Roxbury D., Manohar S., Jagota A. Molecular simulation of DNA β-sheet and β-barrel structures on graphite and carbon nanotubes. J. Phys. Chem. C, 2010, 114, P. 13267–13276.

14. Li L., Cao Q., Liu H., Qiao X., Gu Z., Yu Y., Zuo C. Understanding interactions between poly(styrene-cosodium styrene sulfonate) and singlewalled carbon nanotubes. J Polym Sci., 2021, 59, P. 182–190.

15. Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, 96(3), P. 624–632.

16. Kruchinin N.Yu. Molecular dynamics simulation of the rearrangement of polyampholyte conformations on the surface of a charged oblate metal nanospheroid in a microwave electric field. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14(6), P. 719–728.

17. Kruchinin N.Yu., Kucherenko M.G. Conformational structure of a complex of two oppositely charged polyelectrolytes on the surface of a charged spherical metal nanoparticle. High Energy Chemistry, 2024, 58(6), P. 615–623.

18. Kruchinin N.Yu., Kucherenko M.G. Conformational changes of two oppositely charged polyelectrolytes, including those combined into a single block copolymer, on the surface of a charged or transversely polarized cylindrical metal nanowire. Journal of Polymer Research, 2025, 32(3), P. 79.

19. Salimi A., Compton R.G., Hallaj R. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem, 2004, 333(1), P. 49–56.

20. Chen Q., Wang Q., Liu Y.-C., Wu T., Kang Y., Moore J.D. Gubbins K. E. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. The Journal of Chemical Physics, 2009, 131(1), P. 015101.

21. Kang Y., Wang Q., Liu Y.-C., Wu T., Chen Q., Guan W.-J. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. The Journal of Physical Chemistry B, 2008, 112(15), P. 4801–4807.

22. Kang Y., Liu Y.-C., Wang Q., Shen J.-W., Wu T., Guan, W.-J. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials, 2009, 30(14), P. 2807–2815.

23. Zhang Z., Kang Y., Liang L., Liu Y., Wu T., Wang Q. Peptide encapsulation regulated by the geometry of carbon nanotubes. Biomaterials, 2014, 35(5), P. 1771–1778.

24. Yang N., Chen X., Ren T., Zhang P., Yang D. Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 2015, 207(A), P. 90–715.

25. Chavan K.S., Barton S.C. Confinement and Diffusion of Small Molecules in a Molecular-Scale Tunnel. Journal of The Electrochemical Society, 167, P. 023505.

26. Li W., Cheng S., Wang B., Mao Z., Zhang J., Zhang Y., Liu Q.H. The transport of a charged peptide through carbon nanotubes under an external electric field: a molecular dynamics simulation. RSC Adv., 2021, 11, P. 23589–23596.

27. Chen Q., Liang L., Zhang Z., Wang Q. Release of an encapsulated peptide from carbon nanotubes driven by electric fields: a molecular dynamics study. ACS Omega, 2021, 6(41), P. 27485–27490.

28. Andrade L.R.M., Andrade L.N., Bahu J.O., Concha V.O.C., Machado A.T., Pires D.S., Santos R., Cardoso T.F.M., Cardoso J.C., Albuquerque- ´ Junior R.L.C., Severino P., Souto E.B. Biomedical applications of carbon nanotubes: A systematic review of data and clinical trials. Journal of Drug Delivery Science and Technology, 2024, 99, P. 105932.

29. Batys P., Morga M., Bonarek P., Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J. Phys. Chem. B, 2020, 124(14), P. 2961–2972.

30. Resende L.F.T., Basilio F.C., Filho P.A., Therezio E.M., Silva R.A., Oliveira O.N., Marletta A., Campana P.T. Revisiting the conformational ´ transition model for the pH dependence of BSA structure using photoluminescence, circular dichroism, and ellipsometric Raman spectroscopy. International Journal of Biological Macromolecules, 2024, 259(1), P. 129142.

31. Stepanenko D., Wang Y., Simmerling C. Assessing pH-Dependent Conformational Changes in the Fusion Peptide Proximal Region of the SARSCoV-2 Spike Glycoprotein. Viruses, 2024, 16, P. 1066.

32. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. Scalable molecular dynamics ´ with NAMD. J Comput Chem., 2005, 26, P. 1781–1802.

33. MacKerell Jr. A.D., Bashford D., Bellott M., Dunbrack Jr. R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. All-atom empirical potential for molecular modeling and ´ dynamics studies of proteins. J. Phys. Chem. B., 1998, 102(18), P. 3586–3616.

34. Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., MacKerell Jr. A.D. CHARMM36m: an improved force field ¨ for folded and intrinsically dis-ordered proteins. Nature Methods, 2016, 14, P. 71–73.

35. Radak B.K., Chipot C., Suh D., Jo S., Jiang W., Phillips J.C., Schulten K., Roux B. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. J. Chem. Theory Comput., 2017, 13(12), P. 5933–5944.

36. Zhu F, Schulten K. Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels. Biophysical Journal, 2003, 85(1), P. 236–244.

37. Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, P. 10089– 10092.

38. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, P. 926–935.

39. Kucherenko M.G., Rusinov A.P., Chmereva T.M., Ignat’ev A.A., Kislov D.A., Kruchinin N.Yu. Kinetics of photoreactions in a regular porous nanostructure with cylindrical cells filled with activator-containing macromolecules. Optics and Spectroscopy, 2009, 107(3), P. 480–485.


Supplementary files

Review

For citations:


Kruchinin N.Yu. Controlled release of homogeneous polypeptides from carbon nanotubes with varying PH: molecular dynamics simulation. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):650-659. https://doi.org/10.17586/2220-8054-2025-16-5-650-659

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)