Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Incorporating manganese selenide with polymerized reduced carbon sheets: an efficient and stable electro-catalyst for methanol oxidation

https://doi.org/10.17586/2220-8054-2025-16-5-669-680

Abstract

Reduced graphene oxide/Manganese selenide @Poly-N-methyl pyrrole (RGO/MnSe@P-NMPy) polymer nanocomposite are synthesized via chemical oxidative in-situ polymerization process. The RGO/ MnSe@P-NMPy polymer nanocomposite was examined using FTIR spectroscopy, UV-Visible, XRD, TEM and electrochemical investigations in addition to FESEM with EDAX. The methanol oxidation reaction in basic environments was validated using the cyclic voltammetry method. The RGO/MnSe@P-NMPy polymer nanocomposite electro-catalyst shows excellent electrocatalytic activity, lower oxidation potential (0.1 V), improved current density (96 mA/cm2 ), and excellent stability towards methanol oxidation reaction (MOR) in basic medium. It was observed RGO/MnSe@P-NMPy nanohybrid electrocatalyst, the ECSA value is 183.7 m2 /g. This result clearly depicts that RGO/MnSe@P-NMPy polymer nanocomposite electro-catalyst has more active sites for MOR reaction. Chronoamperometry was utilized to show that, in comparison to the other nanocomposite, the existence of RMP polymer nanocomposite enhanced stability (1000’s) and produced higher current densities (27.71 mA/cm2 ) for methanol oxidation. According to the results, the P-NMPy introduction in RGO/MnSe structure can enhance the performance of methanol oxidation and increase the resistance to CO in comparison with mono metallic catalyst. This study makes the case for the potential development of high-performance, inexpensive catalysts for energy storage, conversion and useful uses.

About the Authors

Kavitha Murugan
V.O. Chidambaram College; Affiliated to Manonmaniam Sundaranar University
India

Kavitha Murugan – PG and Research Department of Chemistry

Thoothukudi-628008, Tamilnadu; Abishekapatti, Tirunelveli-627012, Tamilnadu



Kalaiarasi Senthurpandi
A.P.C Mahalaxmi College for Women; Affiliated to Manonmaniam Sundaranar University
India

Kalaiarasi Senthurpandi – PG and Research Department of Chemistry

Thoothukudi-628002, Tamilnadu; Abishekapatti, Tirunelveli-627012, Tamilnadu



Vedhi Chinnapaiyan
V.O. Chidambaram College; Affiliated to Manonmaniam Sundaranar University
India

Vedhi Chinnapaiyan – PG and Research Department of Chemistry

Thoothukudi-628008, Tamilnadu; Abishekapatti, Tirunelveli-627012, Tamilnadu



Muthuchudarkodi Raja Ram
V.O. Chidambaram College; Affiliated to Manonmaniam Sundaranar University
India

Muthuchudarkodi Rajaram – PG and Research Department of Chemistry

Thoothukudi628008, Tamilnadu; Abishekapatti, Tirunelveli-627012, Tamilnadu



References

1. Compton O.C., Jain B., Dikin D.A., Abouimrane A., Amine K., Nguyen S.T. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 2011, 5 (6), P. 4380–4391.

2. Ennaoui A., Fiechter S., Jaegermann W., Tributsch H. Photo electrochemistry of highly quantum efficient single-crystalline n-FeS2 (pyrite). J. Electrochem. Soc., 1986, 133, P. 97–106.

3. Kwon S.G., Hyeon T. Collodial Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of metals, Oxides and Chalcogenides. Acc. Chem. Res., 2008, 41, P. 1696–1709.

4. Johari P., Shenoy V.B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6, P. 5449–5456.

5. Wang D.S., Zheng W., Hao C.H., Peng Q., Li Y.D. A Synthetic Method for Transition-Metal Chalcogenide Nanoccrystals. Chem. Eur. J., 2009, 15, P. 1870–1875.

6. Santra P.K., Kamat P.V. Mn-Doped Quantum Dot Sensitized Solar Cells:A Strategy to Boost efficiency over 5 %. J. Am. Chem. Soc., 2012, 134, P. 2508–2511.

7. Wang L., Chen L., Luo T., Bao K., Qian Y. A facile method to the cube-like MnSe2 micro crystallines via a hydrothermal process. Solid State Commun., 2006, 138, P. 72–75.

8. Sobhani A., Salavati-Niasari M. Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull., 2013, 48, P. 3204–3210.

9. Zheng L., Li J., Zhou B., Liu H., Bu Z., Chen B., Ang R., Li W. Thermoelectric properties of p-type MnSe. J. Alloy Comp., 2019, 789, P. 953–959.

10. She Z.W., Kibsgaard J., Dickens C.F., Chorkendoree I., Norskov J.K., Jaramillo T.F. Combine in theory and experiment in electrocatalysis: Insight into materials design. Science, 2017, 355.

11. Wang J., Liao T.L., Wei Z., Sun J., Guo J., Sun Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytiic for hydrogen evolution: an electronic structure tuning strategy. Small Methods, 2021, 5.

12. Suh J., Tan T.L., Zhao W., Park J., Lin D.Y., Park T.E., Kim J., Jin C., Saigal N., Ghosh S., Wong Z., Chen Y., Wang F., Walukiewicz W., Eda G., Wu J. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun., 2018, 9, P. 199.

13. Santhosh S., Teller H., Schechter A., Kalarikkal N. Effect of Mndoped NI–Co mixed oxide catalysts on urea oxidation. Chem. Catchem., 2022, 14.

14. Li W., Liang C., Qiu J., Zhou W., Han H., Wei Z. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40, P. 787–790.

15. Zhang L., Zhang D., Ren Z. Mesoporous NiCo2O4 micro/nanospheres with Hierarchicals structures for Supercapacitors and Methanol Electrooxidation. Chem. Electro Chem., 2017, 4, P. 441–449.

16. Wu J.B., Li Z.G., Huang X.H., Lin Y.J. Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electrooxidation. Power Sources, 2013, 224, P. 1–5.

17. Li Z., Li M., Han M., Zeng J., Li Y., Guo Y., Liao S.J. Preparation And Characterization Of Carbon-Supported PTOs electrocatalysts via polyol reduction method for methanol oxidation reaction. Power Sources, 2014, 268, P. 824–830.

18. Zhang W., Pan Z., Yang F.K., Zhao B. A facile in situ approach to polypyrrole functionalization through bioinspired catechol. Adv. Funct. Mater, 2015, 25, P. 1588–1597.

19. Abaci U., Guney H.Y., Kadiroglu U. Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/Pani-PEDOT, Pani/PPy-PEDOT). Electrochim. Acta, 2013, 96, P. 214–224.

20. Vellaichamy B., Periakaruppan P. Silver nanoparticle-embedded RGO-nano sponge for superior catalytic activity towards 4-nitrophenol reduction. RSC Advances, 2016, 6, P. 88837–88845.

21. Wu X., Zhou J., Xing W., Wang G., Cui H., Zhuo S. High-rate capacitive performance of graphene aerogel with a super high C/O molar ratio. J. of Materials Chemistry, 2012, 22, P. 23186–23193.

22. Vellaichamy B., Prakash P., Thomas J. Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Ultrasonics Sonochemistry, 2018, 48, P. 362–369.

23. Onari S., Arai T. Infra-red lattice vibrations and dielectric dispersion in antiferro magnetic semiconductor MnSe2. J. Phys. Soc. Jpn., 1979, 46, P. 184–188.

24. Gemeiner P., Kulocek J., Mikula M., Hatala M., Sovre L., Hlavata L., Micusl M., Omastova M. Polypyrrole coated multi-walled carbon nanotubes for the simple preparation of counter electrodes in dye-sensitized solar cells. Synth. Met., 2015, 210, P. 323–331.

25. Xu C., Sun J., Gao L. Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J. of Materials Chemistry, 2011, 21, P. 11253–11258.

26. Zhu C., Guo S., Fang Y., Dong S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS NAno, 2010, 4, P. 2429–2437.

27. Murrary R.M., Forbes B.C., Heyding R.D. The Copper-Selenium System at Temperatures to 850 K and Pressures To 50 Kbar. J. of Chemistry, 1975, 53, P. 4059–4061.

28. Meher S.K., Rao G.R., Jia Y. Coatings in glewalled carbon nanotube with SnO2 and its electrochemical properties. Power Technol., 2012, 224, P. 306–310.

29. Bing Zhang, Shaofeng Lin, Jingjing Zhang, Xiaopeng Li, Xiaodong. Sun Facile Synthesis of Sandwich-Like rGO/CuS/Polypyrrole Nano architectures for Ecient. Electromagnetic Absorption Materials, 2020, 13, 446.

30. Bajpai A.K., Bhatt R.K., Kaatare R. Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene)dopedpoly(vinyl alcohol) conducting polymer thin flims. Micron, 2016, 96, P. 12–17.

31. Fajin J.L., Cordeiro M.N.D. Insights into the mechanism of methanol steam reforming for hydrogen production over Ni-Cu-Based Catalysts’. American Chemical Society of Catalyst, 2021, 12, P. 512–526.

32. Chang R., Zheng L., Wang C., Yang D., Zhang G., Sun S. Synthesis of hierarchic al platinium-palladium-copper nanodendrites for efficient methanol oxidation. Appl. Catal. B: Environ., 2017, 211, P. 205–211.

33. Kavitha M., Muthuchudarkodi R.R., Shakina J. NiSe integrated with Polymerized Reduced Carbon Sheet: As an effective electro-catalyst formethanol oxidation. Int. J. Hydrogen Energy, 2024, 51, P. 1050–1059.

34. Asgari M., Maragheh M.G., Davarkhah R., Lohrasbi E. Methanol Electrooxidation on the Nickel Oxide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode Prepared Using Pulsed Electrodeposition. J. Electochem. Soc., 2011, 158, K225–K229.

35. Seghiour A., Chevalet J., Barhoum A., Lantelme F. Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling. J. Electroanal. Chem., 1998, 442, P. 113–123.

36. Pieta I.S., Rathi A., Pieta P., Nowakowski R., Hołdynski M., Pisarek M., Kaminska A., Gawande M.B., Zboril R. Electrocatalytic methanol oxidation over Cu,Ni and bimetallic Cu–Ni nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 244, P. 272–283.

37. Gracita M., Tomboc, Hern Kim. Utilization of the superiorproperties of highly mesoporous PVP modified NiCo2O4 with accessible 3D nanostructure and flower-like morphology towards electrochemical methanol oxidation reaction. J. of Energy Chemistry, 2018, 29, P. 136–146.

38. Daryoush Afzali, Fariba Fathirad, Zahra Afzali, Mehdi Esmaeili Bidhendi. Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media. Int. J. of Hydrogen Energy, 2020, 45, P. 22965–22972.

39. Meenakshi Choudhary, Samarjeet Siwal, Debkumar Nandi, Kaushik Mallick. Catalytic performance of thein situ synthesized palladium– polymer nanocomposite. New J. Chem., 2016, 40, P. 2296–2303.


Supplementary files

Review

For citations:


Murugan K., Senthurpandi K., Chinnapaiyan V., Raja Ram M. Incorporating manganese selenide with polymerized reduced carbon sheets: an efficient and stable electro-catalyst for methanol oxidation. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):669-680. https://doi.org/10.17586/2220-8054-2025-16-5-669-680

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)