Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Modified ZnSe nanoparticles for removal of heavy metal iron (Fe) from aqueous solution

https://doi.org/10.17586/2220-8054-2025-16-5-681-692

Abstract

Iron is a heavy metal found in water due to natural geological sources, household trash, industrial waste, and numerous by-products. An excessive amount of iron in drinking water can lead to significant health issues in humans. In the current study, metallic Zn–Se NPs modified with Ag and urea were synthesised via the sol-gel method and characterised by XRD, FESEM, EDX and FTIR. The synthesised ZnSe:Ag:Urea nanoparticles were used for the adsorptive removal of iron, a heavy metal, from water. Herein, we have utilised adsorption technology to extract iron ions from water, considering the toxicity of iron at high concentrations. Experimental batch adsorption studies were conducted on an aqueous solution containing Fe (III) ions under various conditions, including temperature, contact time, adsorbent dosage, and initial metal ion concentration. Results showed that iron adsorption was favourable, with a maximum removal percentage of 89.5 % under optimal room temperature conditions, optimal adsorbent dosage, and initial metal ion concentration. of 0.1 g/L and 100 mL, respectively. The iron absorption also reached an equilibrium state within 80 minutes of contact time by using ZnSe:Ag:Urea as the adsorbent.

About the Authors

Khurshed A. A. Shah
Sri Pratap College, Cluster University Srinagar
India

Khurshed A. Shah – PG Department of Physics

J&K-190001



Humaira S. Wani
Institute of Technology, Zakura Campus, University of Kashmir
India

Humaira S. Wani – Department of Applied Sciences

Srinagar, J&K-190006



S.M.A. Andrabi
Institute of Technology, Zakura Campus, University of Kashmir
India

S. M. A. Andrabi – Department of Applied Sciences

Srinagar, J&K-190006



Quinton L. Williams
Howard University
United States

Quinton L. Williams – Department of Physics and Astronomy

2355 6th St., NW, Washington, DC 20059



References

1. Tabassum H., Ahmad I.Z. Applications of metallic nanomaterials for the treatment of water. Letters in Applied Microbiology. The Society for Applied Microbiology, 2021, 75, P. 731–743.

2. Shaikh R.B., Saifullah B., Rehman F.U. Greener Method for the Removal of Toxic Metal Ions from the Wastewater by Application of Agricultural Waste as an Adsorbent. Water, 2018, 10 (10).

3. Kolluru S.S., Agarwal S., Sireesha S., Sreedhar I., Kale S.R. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 2021, 150, P. 323–355.

4. Beena V., Rayar S.L., Ajitha S., Ahmad A., Albaqami M.D., Alsabar F.A.A., Sillanpa¨a M. Synthesis and Characterization of Sr-Doped ZnSe ¨ Nanoparticles for Catalytic and Biological Activities. Water, 2021, 13, 2189.

5. Baby R., Hussein M.Z., Abdullah A.H., Zainal Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers, 2022, 14, 583.

6. Silver J. Chemistry of Iron, first ed., Springer Science + Business Media, Dordrecht, 1993.

7. Green R., Charlton R., Seftel H., Bothwell T., Mayet F., Adams B., Finch C., Layrisse M. Body iron excretion in man: a collaborative study. Am. J. Med., 1968, 45, P. 336–353.

8. Khatri N., Tyagi S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci., 2015, 8, P. 23–39.

9. Jusoh A.B., Cheng W.H., Low W.M., Nora’aini A., Noor M.J.M. Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 2005, 182, P. 347–353.

10. Tekerlekopoulou A.G., Pavlou S., Vayenas D.V. Removal of ammonium, iron and manganese from potable water in biofiltration units: a review. J. Chem. Technol. Biotechnol., 2013, 88, P. 751–773.

11. Ellis D., Bouchard C., Lantagne G. Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination, 2000, 130, P. 255–264.

12. Sengupta A., Gupta A., Deb A.K. Arsenic crisis in Indian subcontinent: a local solution to a global problem. Water, 2001, 21, P. 34–36.

13. Kumar V., Bharti P.K., Talwar M., Tyagi A.K., Kumar P. Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci., 2017, 31 (1), P. 44–51.

14. Mahanta D.B., Das N.N., Dutta R.K. A chemical and bacteriological study of drinking water in tea gardens of central Assam. Indian J. Environ. Prot., 2004, 24, P. 654–660.

15. Sharma R., Shah S., Mahanta C. Hydrogeochemical study of groundwater fluoride contamination: a case study from Guwahati city India. Asian J. Water Environ. Pollut., 2005, 2, P. 47–54.

16. Houben G.J. Iron oxides in wells. Part 1. Genesis, mineralogy and geochemistry. Appl. Geochem., 2003, 18, P. 927–939.

17. World Health Organization. Iron in drinking water. In: Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996.

18. Khatri N., Tyagi S., Rawtani D. Assessment of drinking water quality and its health effects in rural areas of Harij Taluka, Patan district of Northern Gujarat. Environ. Claims J., 2016, 28 (3), P. 223–246.

19. Zheng Q., Zhao Y., Guo J., Zhao S., Song L., Fei C., Zhang Z., Li X., Chang C. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signalling pathway in patients with myelodysplastic syndrome. Leuk. Res., 2017, 58, P. 55–62.

20. Hartmann J., Braulke F., Sinzig U., Wulf G., Maas J.H., Konietschke F., Haase D. Iron overload impairs proliferation of erythroid progenitors cells (BFU-E) from patients with myelodysplastic syndromes. Leuk. Res., 2013, 37, P. 327–332.

21. Chai X., Li D., Cao X., Zhang Y., Mu J., Lu W., Xiao X., Li C., Meng J., Chen J., Li Q., Wang J., Meng A., Zhao M. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci. Rep., 2015, 5, 10181.

22. Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 2007, 110, P. 3056–3063.

23. Shao L., Li H., Pazhanisamy S.K., Meng A., Wang Y., Zhou D. Reactive oxygen species and hematopoietic stem cell senescence. Int. J. Hematol., 2011, 94, P. 24–32.

24. Frippiat C., Dewelle J., Remacle J., Toussaint O. Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic. Biol. Med., 2002, 33, P. 1334–1346.

25. Prus E., Fibach E. Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol., 2010, 123, P. 14–20.

26. Alimohammadi V., Sedighi M., Jabbari E. Experimental study on efficient removal of total iron from wastewater using magnetic-modified multiwalled carbon nanotubes. Ecol. Eng., 2017, 102, P. 90–97.

27. Das B., Hazarika P., Saikia G., Kalita H., Goswami D.C., Das H.B., Dube S.N., Dutta R.K. Removal of iron by groundwater by ash: a systematic study of a traditional method. J. Hazard. Mater., 2007, 141, P. 834–841.

28. Michalakos G.D., Nieva J.M., Vayenas D.V., Lyberatos G. Removal of iron from potable water using a Trickling filter. Wat. Res., 1997, 31 (5), P. 991–996. [29] Shalini chaturvedi. Removal of iron for safe drinking water. Desalination, 2012, URL: https://www.academia.edu/125112372/Removal_of_iron_for_safe_drinking_water.

29. Helal E.H.D., Dessouki H.A., Nassar M.Y., Ahmed I.S. Preparation and spectral analysis of nanosized ZnSe particles. J. Basic Environ. Sci., 2018, 5, P. 20–24.

30. Dehghani S., et al. Zinc selenide nanoparticles: Green synthesis and biomedical applications. Nanomed. J., 2022, 9, P. 15–23.

31. Yang Y., Wu Z., Yang R., Li Y., Liu X., Zhang L., Yu B. Insights into the mechanism of enhanced photocatalytic dye degradation and antibacterial activity over ternary ZnO/ZnSe/MoSe2 photocatalysts under visible light irradiation. Appl. Surf. Sci., 2021, 539, 148220.

32. Beena V., Ajitha S., Rayar S.L., Parvathiraja C., Kannan K., Palani G. Enhanced Photocatalytic and Antibacterial Activities of ZnSe Nanoparticles. J. Inorg. Organomet. Polym. Mater., 2021, 4, P. 1–12.

33. Archana J., Mani S., M N., Ponnusamy S., Muthamizhchelvan C., Hayakawa Y. Chemical synthesis and functional properties of hexamethylenetetramine capped ZnSe nanorods. Mater Lett., 2014, 125, P. 32–35.

34. Yang J., Wang G., Liu H., Park J., Gou X., Cheng X. Solvothermal synthesis and characterization of ZnSe nanoplates. J Cryst Growth., 2008, 310, P. 3645–3648.

35. Lei Z., Wei X., Bi S., He R. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Mater. Lett., 2008, 62, P. 3694–3696.

36. Hao H., Yao X., Wang M. Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol-gel in situ crystallization method. Opt Mater., 2007, 29, P. 573–577.

37. Panneerselvam A., Malik A., O’Brien P., Nguyen C.Q. The CVD of silver selenide films from dichalcogenophosphinato and imidodichalcogenodiphosphinatosilver(I) single-source precursors. J. of Materials Chemistry, 2009, 19 (3).

38. Sharma P. Synthesis and characterization of Ag-chalcogenide nanoparticles for possible applications in photovoltaics. Materials Science – Poland, 2018, 36 (3), P. 375–380.

39. Thendral M., et al. Nucleation and spectroscopic studies of manganese doped new nlo organic crystal. Int. J. of Current Research in Life Sciences, 2018, 7 (5), P. 2121–2125.

40. Madhurambal G., Mariappan M. Growth and characterization of urea-thiourea non-linear optical organic mixed crystal. Indian J. of Pure & Applied Physics, 2010, 48, P. 264–270.

41. Shameli K., et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. of Nanomedicine, 2012, P. 5603–5610.

42. Manivannan M., et al. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. of Engineering Science and Technology, 2011, 3 (11), P. 8048–8060.

43. Ahamed A.J., et al. Synthesis and Characterization of ZnSe Nanoparticles by Co-precipitation Method. J. of Nanoscience and Technology, 2016, 2, P. 148–150.

44. Penland R.B., Mizushima S., Curran C., Quagliano J.V. Infrared Absorption Spectra of Inorganic Coordination Complexes. X. Studies of Some ¨ Metal-Urea Complexes. J. of the American Chemical Society, 1957, 79 (7), P. 1575–1578.

45. Jackovitz J.F., Walter J.L. Infrared absorption spectra of metal-amino acid complexes–V. The infrared spectra and normal vibrations of metalleucine chelates. Spectrochimica Acta, 1966, 22 (8), P. 1393–1406.

46. Megahed A.S., Ibrahim O.B., Adam A.M.A., AL-Majthoub M.M. The Chelating Behavior of Urea Complexed with the Metal Ions of Copper (II), Zinc (II), Silver (I), Cadmium (II) and Mercury (II) at Room Temperature. Research J. of Pharmaceutical, Biological and Chemical Sciences, 2014, 5 (2), P. 970–980.

47. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons, 2009.

48. Kakavandi B., Esrafili A., Mohseni-Bandpi A., Jafari A.J., Kalantary R.R. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Sci. Technol., 2014, 69 (1), P. 147–155.

49. Arbanah M., Najwa M.R.M., Halim K.H.K. Biosorption of Cr (III), Fe (II), Cu (II), Zn (II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int. J. Biotechnol. Wellness Ind., 2012, P. 152–162.

50. Luo C., Tian Z., Yang B., Zhang L., Yan S. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J., 2013, 234, P. 256–265.

51. Jung C., Heo J., Han J., Her N., Lee S.-J., Oh J., Ryu J., Yoon Y. Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol., 2013, 106, P. 63–71.

52. Kaveeshwar A.R., Sanders M., Ponnusamy S.K., Depan D. et al. Chitosan as a biosorbent for adsorption of iron (II) from fracking wastewater. Polym. Adv. Technol., 2018, 29, P. 961–969.

53. Jain C.K., Malik D.S., Yadav A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process, 2016, 3, P. 495–523.

54. Li J., Fan M.J., Li M., Liu X. Cr(VI) removal from groundwater using double surfactant-modified nanoscale zero-valent iron (nZVI): Effects of materials in different status. Sci. Total Environ., 2020, 717, 137112.


Supplementary files

Review

For citations:


Shah Kh.A., Wani H.S., Andrabi S., Williams Q.L. Modified ZnSe nanoparticles for removal of heavy metal iron (Fe) from aqueous solution. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):681-692. https://doi.org/10.17586/2220-8054-2025-16-5-681-692

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)