Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Модифицированные наночастицы селенида цинка для удаления тяжелого металла железа (Fe) из водных растворов

https://doi.org/10.17586/2220-8054-2025-16-5-681-692

Аннотация

Железо является тяжелым металлом, который присутствует в воде вследствие природных геологических источников, бытовых отходов, промышленных стоков и многочисленных побочных продуктов. Чрезмерное количество железа в питьевой воде может вызывать серьезные проблемы со здоровьем у людей. В настоящем исследовании металлические наночастицы Zn-Se, модифицированные серебром и мочевиной, были синтезированы зольгель методом и охарактеризованы с помощью РФА, FESEM, EDX и ИК-Фурье спектроскопии. Синтезированные наночастицы ZnSe:Ag:Urea использовались для адсорбционного удаления железа – тяжелого металла – из воды. В данной работе для извлечения ионов железа из воды была применена адсорбционная технология, учитывая токсичность железа при высоких концентрациях. Проведены эксперименты по адсорбции в периодическом режиме на водном растворе, содержащем ионы Fe (III), в различных условиях: температуры, времени контакта, дозы сорбента и начальной концентрации ионов металла. Результаты показали, что адсорбция железа протекает эффективно с максимальной степенью удаления 89,5% в оптимальных условиях: комнатная температура, доза сорбента 0,1 г/л и объем раствора 100 мл. Равновесие адсорбции железа достигалось в течение 80 минут при использовании ZnSe:Ag:Urea в качестве сорбента.

Об авторах

Хуршед А. Шах
Sri Pratap College, Cluster University Srinagar
Индия


Хумайра С. Ван
Institute of Technology, Zakura Campus, University of Kashmir
Индия


С.М.А. Андраби
Institute of Technology, Zakura Campus, University of Kashmir
Индия


Квинтон Л. Уильямс
Howard University
Соединённые Штаты Америки


Список литературы

1. Tabassum H., Ahmad I.Z. Applications of metallic nanomaterials for the treatment of water. Letters in Applied Microbiology. The Society for Applied Microbiology, 2021, 75, P. 731–743.

2. Shaikh R.B., Saifullah B., Rehman F.U. Greener Method for the Removal of Toxic Metal Ions from the Wastewater by Application of Agricultural Waste as an Adsorbent. Water, 2018, 10 (10).

3. Kolluru S.S., Agarwal S., Sireesha S., Sreedhar I., Kale S.R. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 2021, 150, P. 323–355.

4. Beena V., Rayar S.L., Ajitha S., Ahmad A., Albaqami M.D., Alsabar F.A.A., Sillanpa¨a M. Synthesis and Characterization of Sr-Doped ZnSe ¨ Nanoparticles for Catalytic and Biological Activities. Water, 2021, 13, 2189.

5. Baby R., Hussein M.Z., Abdullah A.H., Zainal Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers, 2022, 14, 583.

6. Silver J. Chemistry of Iron, first ed., Springer Science + Business Media, Dordrecht, 1993.

7. Green R., Charlton R., Seftel H., Bothwell T., Mayet F., Adams B., Finch C., Layrisse M. Body iron excretion in man: a collaborative study. Am. J. Med., 1968, 45, P. 336–353.

8. Khatri N., Tyagi S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci., 2015, 8, P. 23–39.

9. Jusoh A.B., Cheng W.H., Low W.M., Nora’aini A., Noor M.J.M. Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination, 2005, 182, P. 347–353.

10. Tekerlekopoulou A.G., Pavlou S., Vayenas D.V. Removal of ammonium, iron and manganese from potable water in biofiltration units: a review. J. Chem. Technol. Biotechnol., 2013, 88, P. 751–773.

11. Ellis D., Bouchard C., Lantagne G. Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination, 2000, 130, P. 255–264.

12. Sengupta A., Gupta A., Deb A.K. Arsenic crisis in Indian subcontinent: a local solution to a global problem. Water, 2001, 21, P. 34–36.

13. Kumar V., Bharti P.K., Talwar M., Tyagi A.K., Kumar P. Studies on high iron content in water resources of Moradabad district (UP), India. Water Sci., 2017, 31 (1), P. 44–51.

14. Mahanta D.B., Das N.N., Dutta R.K. A chemical and bacteriological study of drinking water in tea gardens of central Assam. Indian J. Environ. Prot., 2004, 24, P. 654–660.

15. Sharma R., Shah S., Mahanta C. Hydrogeochemical study of groundwater fluoride contamination: a case study from Guwahati city India. Asian J. Water Environ. Pollut., 2005, 2, P. 47–54.

16. Houben G.J. Iron oxides in wells. Part 1. Genesis, mineralogy and geochemistry. Appl. Geochem., 2003, 18, P. 927–939.

17. World Health Organization. Iron in drinking water. In: Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996.

18. Khatri N., Tyagi S., Rawtani D. Assessment of drinking water quality and its health effects in rural areas of Harij Taluka, Patan district of Northern Gujarat. Environ. Claims J., 2016, 28 (3), P. 223–246.

19. Zheng Q., Zhao Y., Guo J., Zhao S., Song L., Fei C., Zhang Z., Li X., Chang C. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signalling pathway in patients with myelodysplastic syndrome. Leuk. Res., 2017, 58, P. 55–62.

20. Hartmann J., Braulke F., Sinzig U., Wulf G., Maas J.H., Konietschke F., Haase D. Iron overload impairs proliferation of erythroid progenitors cells (BFU-E) from patients with myelodysplastic syndromes. Leuk. Res., 2013, 37, P. 327–332.

21. Chai X., Li D., Cao X., Zhang Y., Mu J., Lu W., Xiao X., Li C., Meng J., Chen J., Li Q., Wang J., Meng A., Zhao M. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci. Rep., 2015, 5, 10181.

22. Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 2007, 110, P. 3056–3063.

23. Shao L., Li H., Pazhanisamy S.K., Meng A., Wang Y., Zhou D. Reactive oxygen species and hematopoietic stem cell senescence. Int. J. Hematol., 2011, 94, P. 24–32.

24. Frippiat C., Dewelle J., Remacle J., Toussaint O. Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic. Biol. Med., 2002, 33, P. 1334–1346.

25. Prus E., Fibach E. Effect of iron chelators on labile iron and oxidative status of thalassaemic erythroid cells. Acta Haematol., 2010, 123, P. 14–20.

26. Alimohammadi V., Sedighi M., Jabbari E. Experimental study on efficient removal of total iron from wastewater using magnetic-modified multiwalled carbon nanotubes. Ecol. Eng., 2017, 102, P. 90–97.

27. Das B., Hazarika P., Saikia G., Kalita H., Goswami D.C., Das H.B., Dube S.N., Dutta R.K. Removal of iron by groundwater by ash: a systematic study of a traditional method. J. Hazard. Mater., 2007, 141, P. 834–841.

28. Michalakos G.D., Nieva J.M., Vayenas D.V., Lyberatos G. Removal of iron from potable water using a Trickling filter. Wat. Res., 1997, 31 (5), P. 991–996. [29] Shalini chaturvedi. Removal of iron for safe drinking water. Desalination, 2012, URL: https://www.academia.edu/125112372/Removal_of_iron_for_safe_drinking_water.

29. Helal E.H.D., Dessouki H.A., Nassar M.Y., Ahmed I.S. Preparation and spectral analysis of nanosized ZnSe particles. J. Basic Environ. Sci., 2018, 5, P. 20–24.

30. Dehghani S., et al. Zinc selenide nanoparticles: Green synthesis and biomedical applications. Nanomed. J., 2022, 9, P. 15–23.

31. Yang Y., Wu Z., Yang R., Li Y., Liu X., Zhang L., Yu B. Insights into the mechanism of enhanced photocatalytic dye degradation and antibacterial activity over ternary ZnO/ZnSe/MoSe2 photocatalysts under visible light irradiation. Appl. Surf. Sci., 2021, 539, 148220.

32. Beena V., Ajitha S., Rayar S.L., Parvathiraja C., Kannan K., Palani G. Enhanced Photocatalytic and Antibacterial Activities of ZnSe Nanoparticles. J. Inorg. Organomet. Polym. Mater., 2021, 4, P. 1–12.

33. Archana J., Mani S., M N., Ponnusamy S., Muthamizhchelvan C., Hayakawa Y. Chemical synthesis and functional properties of hexamethylenetetramine capped ZnSe nanorods. Mater Lett., 2014, 125, P. 32–35.

34. Yang J., Wang G., Liu H., Park J., Gou X., Cheng X. Solvothermal synthesis and characterization of ZnSe nanoplates. J Cryst Growth., 2008, 310, P. 3645–3648.

35. Lei Z., Wei X., Bi S., He R. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Mater. Lett., 2008, 62, P. 3694–3696.

36. Hao H., Yao X., Wang M. Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol-gel in situ crystallization method. Opt Mater., 2007, 29, P. 573–577.

37. Panneerselvam A., Malik A., O’Brien P., Nguyen C.Q. The CVD of silver selenide films from dichalcogenophosphinato and imidodichalcogenodiphosphinatosilver(I) single-source precursors. J. of Materials Chemistry, 2009, 19 (3).

38. Sharma P. Synthesis and characterization of Ag-chalcogenide nanoparticles for possible applications in photovoltaics. Materials Science – Poland, 2018, 36 (3), P. 375–380.

39. Thendral M., et al. Nucleation and spectroscopic studies of manganese doped new nlo organic crystal. Int. J. of Current Research in Life Sciences, 2018, 7 (5), P. 2121–2125.

40. Madhurambal G., Mariappan M. Growth and characterization of urea-thiourea non-linear optical organic mixed crystal. Indian J. of Pure & Applied Physics, 2010, 48, P. 264–270.

41. Shameli K., et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. of Nanomedicine, 2012, P. 5603–5610.

42. Manivannan M., et al. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. of Engineering Science and Technology, 2011, 3 (11), P. 8048–8060.

43. Ahamed A.J., et al. Synthesis and Characterization of ZnSe Nanoparticles by Co-precipitation Method. J. of Nanoscience and Technology, 2016, 2, P. 148–150.

44. Penland R.B., Mizushima S., Curran C., Quagliano J.V. Infrared Absorption Spectra of Inorganic Coordination Complexes. X. Studies of Some ¨ Metal-Urea Complexes. J. of the American Chemical Society, 1957, 79 (7), P. 1575–1578.

45. Jackovitz J.F., Walter J.L. Infrared absorption spectra of metal-amino acid complexes–V. The infrared spectra and normal vibrations of metalleucine chelates. Spectrochimica Acta, 1966, 22 (8), P. 1393–1406.

46. Megahed A.S., Ibrahim O.B., Adam A.M.A., AL-Majthoub M.M. The Chelating Behavior of Urea Complexed with the Metal Ions of Copper (II), Zinc (II), Silver (I), Cadmium (II) and Mercury (II) at Room Temperature. Research J. of Pharmaceutical, Biological and Chemical Sciences, 2014, 5 (2), P. 970–980.

47. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons, 2009.

48. Kakavandi B., Esrafili A., Mohseni-Bandpi A., Jafari A.J., Kalantary R.R. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Sci. Technol., 2014, 69 (1), P. 147–155.

49. Arbanah M., Najwa M.R.M., Halim K.H.K. Biosorption of Cr (III), Fe (II), Cu (II), Zn (II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int. J. Biotechnol. Wellness Ind., 2012, P. 152–162.

50. Luo C., Tian Z., Yang B., Zhang L., Yan S. Manganese dioxide/iron oxide/acid oxidized multi-walled carbon nanotube magnetic nanocomposite for enhanced hexavalent chromium removal. Chem. Eng. J., 2013, 234, P. 256–265.

51. Jung C., Heo J., Han J., Her N., Lee S.-J., Oh J., Ryu J., Yoon Y. Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol., 2013, 106, P. 63–71.

52. Kaveeshwar A.R., Sanders M., Ponnusamy S.K., Depan D. et al. Chitosan as a biosorbent for adsorption of iron (II) from fracking wastewater. Polym. Adv. Technol., 2018, 29, P. 961–969.

53. Jain C.K., Malik D.S., Yadav A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process, 2016, 3, P. 495–523.

54. Li J., Fan M.J., Li M., Liu X. Cr(VI) removal from groundwater using double surfactant-modified nanoscale zero-valent iron (nZVI): Effects of materials in different status. Sci. Total Environ., 2020, 717, 137112.


Дополнительные файлы

Рецензия

Для цитирования:


Шах Х.А., Ван Х.С., Андраби С., Уильямс К.Л. Модифицированные наночастицы селенида цинка для удаления тяжелого металла железа (Fe) из водных растворов. Наносистемы: физика, химия, математика. 2025;16(5):681-692. https://doi.org/10.17586/2220-8054-2025-16-5-681-692

For citation:


Shah Kh.A., Wani H.S., Andrabi S., Williams Q.L. Modified ZnSe nanoparticles for removal of heavy metal iron (Fe) from aqueous solution. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):681-692. https://doi.org/10.17586/2220-8054-2025-16-5-681-692

Просмотров: 14


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)