Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

GdI3 fullerenes: a DFT study of structural and electronic properties

https://doi.org/10.17586/2220-8054-2025-16-5-693-699

Abstract

The existence of zero-dimensional fullerene-like gadolinium(III) iodide is proposed. The models of tetrahedral, octahedral and icosahedral GdI3 fullerenes with the size up to ∼1000 atoms are constructed. Their stability and electronic properties are investigated by means of a density functional theory method. Similarly to other known inorganic fullerenes and nanotubes, the strain energies of GdI3 fullerenes decrease with the radii increase, exceeding always the strain energies of GdI3 nanotubes of the same radii. At that octahedral and icosahedral morphologies are the most preferable. Irrespective size and morphology, all considered GdI3 fullerenes are semiconductors with possibly ferromagnetic ordering at extremely low temperatures. The HOMO-LUMO gaps of GdI3 fullerenes are narrower on 1.1 – 1.7 eV, when comparing to the band gap of the flat GdI3 monolayer.

About the Author

A. N. Enyashin
Institute of Solid State Chemistry UB RAS
Russian Federation

Andrey N. Enyashin 

Ekaterinburg



References

1. Luo X.-M., Hu Z.-B., Lin Q.-F., Cheng W., Cao J.-P., Cui C.-H., Mei H., Song Y., Xu Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60. J. of the American Chemical Society, 2018, 140, P. 11219–11222.

2. Xu Q., Liu B., Ye M., Zhuang G., Long L., Zheng L. Gd(OH)F2: A Promising Cryogenic Magnetic Refrigerant. J. of the American Chemical Society, 2022, 144, P. 13787–13793.

3. Iyad N., Ahmad M.S., Alkhatib S.G., Hjouj M. Gadolinium contrast agents – challenges and opportunities of a multidisciplinary approach: Literature review. European J. of Radiology Open, 2023, 11, 100503.

4. Thomsen H.S., Almen T., Morcos S.K., members of the Contrast Media Safety Committee of ESUR. Gadolinium-containing contrast media for ´ radiographic examinations: a position paper. European Radiology, 2002, 12, P. 2600–2605.

5. Saha S., Ntarisa A.V., Quang N.D., Kim H.J., Kothan S., Kaewkhao J. Synthesis and elemental analysis of gadolinium halides (GdX3) in glass matrix for radiation detection applications. Optical Materials, 2022, 129, 112490.

6. Caravan P., Ellison J.J., McMurry T.J., Lauffer R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chemical Reviews, 1999, 99, P. 2293–2352.

7. Ghiassi K.B., Olmstead M.M., Balch A.L. Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents. Dalton Transactions, 2014, 43, P. 7346–7358.

8. Sitharaman B., Kissell K.R., Hartman K.B., Tran L.A., Baikalov A., Rusakova I., Sun Y., Khant H.A., Ludtke S.J., Chiu W., Laus S., Toth ´ E., ´ Helm L., Merbach A.E., Wilson L.J. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications, 2005, 2005, P. 3915–3917.

9. Sitharaman B., van der Zande M., Ananta J.S., Shi X., Veltien A., Walboomers X.F., Wilson L.J., Mikos A.G., Heerschap A., Jansen J.A. Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites. J. of Biomedical Materials Research A, 2010, 93, P. 1454–1462.

10. Hartman K.B., Laus S., Bolskar R.D., Muthupillai R., Helm L., Toth E., Merbach A.E., Wilson L.J. Gadonanotubes as Ultrasensitive pH-Smart Probes for Magnetic Resonance Imaging. Nano Letters, 2008, 8, P. 415–419.

11. Fidiani E., Costa P.M.F.J., Wolter A.U.B., Maier D., Buechner B., Hampel S. Magnetically Active and Coated Gadolinium-Filled Carbon Nanotubes. The J. of Physical Chemistry C, 2013, 117, P. 16725–16733.

12. Anumol E.A., Enyashin A.N., Batra N.M., Costa P.M.F.J., Deepak F.L. Structural and chemical analysis of gadolinium halides within WS2 nanotubes. Nanoscale, 2016, 8, 12170.

13. Deepak F.L., Enyashin A.N. Capillary Imbibition of Gadolinium Halides into WS2 Nanotubes: a Molecular Dynamics View. Israel J. of Chemistry, 2017, 57, P. 501–508.

14. Batra N., Anumol E.A., Smajic J., Enyashin A.N., Deepak F.L., Costa P.M.F.J. Morphological Phase Diagram of a Metal Halide Encapsulated in Carbon Nanotubes. The J. of Physical Chemistry C, 2018, 122, P. 24967–24976.

15. Hacohen Y.R., Popovitz-Biro R., Grunbaum E., Prior Y., Tenne R. Vapor–Liquid–Solid (VLS) Growth of NiCl2 Nanotubes via Reactive Gas Laser Ablation. Advanced Materials, 2002, 14, P. 1075–1078.

16. Bar-Sadan M., Popovitz-Biro R., Prior Y., Tenne R. Closed-cage (fullerene-like) structures of NiBr2. Materials Research Bulletin, 2006, 41, P. 2137–2146.

17. Tenne R., Popovitz-Biro R., Twersky A., Hacohen Y.R. Nanoparticles of CdCl2 with closed cage structures. Israel J. of Chemistry, 2001, 41, P. 7–14.

18. Sallacan N., Popovitz-Biro R., Tenne R. Nanoparticles of CdI2 with closed cage structures obtained via electron-beam irradiation. Solid State Sciences, 2003, 5, P. 905–908.

19. Wang X., Li Y. Fullerene-Like Rare-Earth Nanoparticles. Angewandte Chemie International Edition, 2003, 42, P. 3497–3500.

20. Bar-Sadan M., Kaplan-Ashiri I., Tenne R. Inorganic fullerenes and nanotubes: Wealth of materials and morphologies. European Physical J. Special Topics, 2007, 149, P. 71–101.

21. Enyashin A.N. Theoretical studies of inorganic fullerenes and fullerene-like nanoparticles. Israel J. of Chemistry, 2010, 50, P. 468–483.

22. Ordejon P., Artacho E., Soler J.M. Self-consistent order-N density-functional calculations for very large systems. ´ Physical Review B, 1996, 53, R10441.

23. Garc´ıa A., Papior N., Akhtar A., Artacho E., Blum V., Bosoni E., Brandimarte P., Brandbyge M., Cerda J.I., Corsetti F., Cuadrado R., Dikan V., ´ Ferrer J., Gale J., Garc´ıa-Fernandez P., Garc ´ ´ıa-Suarez V.M., Garc ´ ´ıa S., Huhs G., Illera S., Korytar R., Koval P., Lebedeva I., Lin L., L ´ opez-Tarifa ´ P., Mayo S.G., Mohr S., Ordejon P., Postnikov A., Pouillon Y., Pruneda M., Robles R., S ´ anchez-Portal D., Soler J.M., Ullah R., Yu V.W., Junquera ´ J. SIESTA: Recent developments and applications. The J. of Chemical Physics, 2020, 152, 204108.

24. Asprey L.B., Keenan T.K., Kruse F.H. Preparation and Crystal Data for Lanthanide and Actinide Triiodides. Inorganic Chemistry, 1964, 3, P. 1137–1141.

25. Beck H.P., Gladrow E. Zur Hochdruckpolymorphie der Seltenerd-Trihalogenide. Zeitschrift fur Anorganische und Allgemeine Chemie ¨ , 1979, 453, P. 79–92.

26. Hargittai I. In the shadow’s shadow: Ivan V. Stankevich and C60. Structural Chemistry, 2025, 36, P. 1531–1533.

27. Huisman R., de Jonge R., Haas C., Jellinek F. Trigonal-prismatic coordination in solid compounds of transition metals. J. of Solid State Chemistry, 1971, 3, P. 56–66.

28. Miura A., Tadanaga K., Magome E., Moriyoshi C., Kuroiwa Y., Takahiro T., Kumada N. Octahedral and trigonal-prismatic coordination preferences in Nb-, Mo-, Ta-, and W-based ABX2 layered oxides, oxynitrides, and nitrides. J. of Solid State Chemistry, 2015, 229, P. 272–277.

29. Kasten A., Muller P.H., Schienle M. Magnetic ordering in GdI ¨ 2. Solid State Communications, 1984, 51, P. 919–921.

30. Seifert G., Vietze K., Schmidt R. Ionization energies of fullerenes – size and charge dependence. J. of Physics B, 1996, 29, P. 5183–5192.

31. Bar-Sadan M., Enyashin A.N., Gemming S., Popovitz-Biro R., Hong S.Y., Prior Y., Tenne R., Seifert G. Structure and Stability of Molybdenum Sulfide Fullerenes. The J. of Physical Chemistry B, 2006, 110, P. 25399–25410.

32. Enyashin A.N., Brontvein O., Seifert G., Tenne R. Structure and Stability of GaS Fullerenes and Nanotubes. Israel J. of Chemistry, 2017, 57, P. 529–539.

33. Birowosuto M.D., Dorenbos P. Novel γ- and X-ray scintillator research: on the emission wavelength, light yield and time response of Ce3+ doped halide scintillators. Physica Status Solidi A, 2009, 206, P. 9–20.

34. Li W., Walther C.F.J., Kuc A., Heine T. Density Functional Theory and Beyond for Band-Gap Screening: Performance for Transition-Metal Oxides and Dichalcogenides. J. of Chemical Theory and Computation, 2013, 9, P. 2950–2958.

35. Hovi V., Vuola R., Salmenpera L. The Specific Heats of GdCl ¨ 3, GdBr3, and GdI3 at Low Temperatures. J. of Low Temperature Physics, 1970, 2, P. 383–387.

36. You H., Zhang Y., Chen J., Ding N., An M., Miao L., Dong S. Peierls transition driven ferroelasticity in the two-dimensional d-f hybrid magnets. Physical Review B, 1970, 2, P. 383–387.


Supplementary files

Review

For citations:


Enyashin A.N. GdI3 fullerenes: a DFT study of structural and electronic properties. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(5):693-699. https://doi.org/10.17586/2220-8054-2025-16-5-693-699

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)