On the existence of the maximum number of isolated eigenvalues for a lattice Schrödinger operator
https://doi.org/10.17586/2220-8054-2025-16-6-737-748
Abstract
This paper presents a detailed spectral analysis of the discrete Schrodinger operator Hγλµ(K), which describes a system of two identical bosons on a two-dimensional lattice, Z2 . The operator’s family is parameterized by the quasi-momentum K ∈ T2 and real interaction strengths: γ for on-site, λ for nearestneighbor, and µ for next-nearest-neighbor interactions. A key finding of our study is that, under specific conditions on the interaction parameters, the operator Hγλµ(K) consistently possesses a total of seven eigenvalues that lie either below the bottom or above the top of its essential spectrum, over all K ∈ T2
Keywords
About the Authors
S. N. LakaevUzbekistan
Saidakhmat N. Lakaev
140104, Samarkand
D. A. Latipova
Uzbekistan
Dildora A. Latipova
140104, Samarkand
M. O. Akhmadova
Uzbekistan
Mukhayyo O. Akhmadova
140104, Samarkand
References
1. Mattis D. The few-body problem on a lattice. Rev. Mod. Phys., 1986, 58, P. 361–379.
2. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The Threshold Effects for the Two-particle Hamiltonians on Lattices. Comm. Math. Phys., 2006, 262, P. 91–115.
3. Bach V., W. de Siqueira Pedra, Lakaev S.N. Bounds on the discrete spectrum of lattice Schrodinger operators. ¨ J. Math. Phys., 2017, 59(2), P. 022109.
4. Faria Da Veiga P.A., Ioriatti L., O’Carroll M. Energy-momentum spectrum of some two-particle lattice Schrodinger Hamiltonians. ¨ Phys. Rev. E, 2002, 66, P. 016130.
5. Hiroshima F., Muminov Z., Kuljanov U. Threshold of discrete Schrodinger operators with delta-potentials on ¨ N-dimensional lattice. Lin. Multilin. Algebra, 2020, 70, P. 919–954.
6. Lakaev S.N., Ozdemir E. The existence and location of eigenvalues of the one particle Hamiltonians on lattices. ¨ Hacettepe J. Math. Stat., 2016, 45, P. 1693–1703.
7. Kurbanov Sh. Kh., Dustov S.T. Puiseux Series Expansion for Eigenvalue of the Generalized Friedrichs Model with the Perturbation of Rank One. Lobachevskii Journal of Mathematics, 2022, 4, P. 1365–1372.
8. Muminov M.I., Khurramov A.M., Bozorov I.N. On eigenvalues and virtual levels of a two-particle Hamiltonian on a d-dimensional lattice. Nanosystems: Phys. Chem. Math., 2023, 14(3), P. 295–303.
9. Kurbanov S.K., Abduvayitov S.S. The Discrete Spectrum of the Generalized Friedrichs Model with a Rank-Two Perturbation. Lobachevskii Journal of Mathematics, 2025, 46, P. 713–723.
10. Faddeev L.D., Merkuriev S.P. Quantum Scattering Theory for Several Particle Systems. Doderecht: Kluwer Academic Publishers, 1993.
11. Teschl G. Jacobi Operators and Completely Integrable Nonlinear Lattices, Providence, AMS, 2000.
12. Yafaev D.R. A point interaction for the discrete Schrodinger operator and generalized Chebyshev polynomials. ¨ J. Math. Phys., 2017, 58, P. 063511.
13. Bagmutov A.S., Popov I.Y. Window-coupled nanolayers: window shape influence on one-particle and two-particle eigenstates. Nanosystems: Phys. Chem. Math., 2020, 11(6), P. 636–641.
14. Winkler K., Thalhammer G., Lang F., Grimm R., Denschlag J.H.,Daley A.J., Kantian A., Buchler H.P., Zoller P. Repulsively bound atom pairs in ¨ an optical lattice. Nature, 2006, 441, P. 853–856.
15. Bloch I. Ultracold quantum gases in optical lattices. Nat. Phys., 2005, 1, P. 23–30.
16. Jaksch D., Bruder C., Cirac J., Gardiner C.W., Zoller P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 1998, 81, P. 3108–3111.
17. Jaksch D., Zoller P. The cold atom Hubbard toolbox. Ann. Phys., 2005, 315, P. 52–79.
18. Lewenstein M., Sanpera A., Ahufinger V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems. Oxford University Press, Oxford, 2012.
19. Hofstetter W., et al. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett., 2002, 89, P. 220407.
20. Efimov V.N. Weakly bound states of three resonantly interacting particles. Yad. Fiz., 1970, 12, P. 1080 [Sov. J. Nucl. Phys., 1970, 12, P. 589].
21. Ovchinnikov Y.N., Sigal I.N. Number of bound states of three-body systems and Efimov’s effect. Ann. Phys., 1979, 123(2), P. 274–295.
22. Sobolev A.V. The Efimov effect. Discrete spectrum asymptotics. Commun. Math. Phys., 1993, 156(1), P. 101–126.
23. Tamura H. The Efimov effect of three-body Schrodinger operators. ¨ J. Funct. Anal., 1991, 95(2), P. 433–459.
24. Yafaev D.R. On the theory of the discrete spectrum of the three-particle Schrodinger operator. ¨ Mat. Sb., 1974, 94(136), P. 567–593.
25. Lakaev S.N. The Efimov’s effect of the three identical quantum particle on a lattice. Funct. Anal. Appl., 1993, 27, P. 15–28.
26. Dell’Antonio G., Muminov Z.I., Shermatova Y.M. On the number of eigenvalues of a model operator related to a system of three particles on lattices. J. Phys. A, 2011, 44, P. 315302.
27. Naidon P., Endo S. Efimov physics: A review. Rep. Prog. Phys., 2017, 80, P. 056001.
28. Motovilov A.K., Sandhas W., Belyaev V.B. Perturbation of a lattice spectral band by a nearby resonance. J. Math. Phys., 2001, 42, P. 2490–2506.
29. Reed M., Simon B. Methods of Modern Mathematical Physics. III: Scattering Theory. Academic Press, N.Y., (1978).
30. Boltaev A.T., Almuratov F.M. The Existence and Asymptotics of Eigenvalues of Schrodinger Operator on Two Dimensional Lattices. ¨ Lobachevskii Journal of Mathematics, 2022, 43, P. 3460–3470.
31. Muminov Z.I., Aktamova V.U. The point spectrum of the three-particle Schrodinger operator for a system comprising two identical bosons and ¨ one fermion on Z. Nanosystems: Phys. Chem. Math., 2024, 15(4), P. 438–447.
32. Alladustov S.U., Hiroshima F., Muminov Z.I. On the Spectrum of the Discrete Schrodinger Operator of a Rank-Two Perturbation on. ¨ Lobachevskii Journal of Mathematics, 2024, 45, P. 4874–4887.
33. Akhmadova M.O., Azizova M.A. Spectral analysis of two-particle Hamiltonians with short-range interactions. Nanosystems: Phys. Chem. Math., 2025, 16(5), P. 577–585.
34. Abdullaev J.I., Khalkhuzhaev A.M., Usmonov L.S. Monotonicity of the eigenvalues of the two-particle Schrodinger operator on a lattice. ¨ Nanosystems: Phys. Chem. Math., 2021, 12(6), P. 657–663.
35. Lakaev S.N., Kholmatov Sh.Y., Khamidov Sh.I. Bose-Hubbard model with on-site and nearest-neighbor interactions; exactly solvable case. J. Phys. A: Math. Theor., 2021, 54, P. 245201.
36. Lakaev S.N., Akhmadova M.O. The Number and location of eigenvalues for the two-particle Schrodinger operators on lattices. ¨ Complex Analysis and Operator Theory, 2023, 17.
37. Akhmadova M.O., Alladustova I.U., Lakaev S.N. On the Number and Locations of Eigenvalues of the Discrete Schrodinger Operator on a Lattice. ¨ Lobachevskii Journal of Mathematics, 2023, 44, P. 1091–1099.
38. Lakaev S.N., Motovilov A.K., Abdukhakimov S.Kh. Two-fermion lattice Hamiltonian with first and second nearest-neighboring-site interactions. J. Phys. A: Math. Theor., 2023, 56, P. 315202.
39. Lakaev S.N., Khamidov Sh.I., Akhmadova M.O. Number of bound states of the Hamiltonian of a lattice two-boson system with interactions up to the next neighbouring sites. Lobachevskii Journal of Mathematics, 2024, 45(12), P. 6409–6420.
40. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics. Springer, Berlin, 1988.
41. Lippmann B.A., Schwinger J. Variational principles for scattering processes. I. Phys. Rev., 1950, 79, P. 469.
42. Reed M., Simon B. Methods of Modern Mathematical Physics: Analysis of operators. Vol. IV. Academic Press, NY, 1978.
Review
For citations:
Lakaev S.N., Latipova D.A., Akhmadova M.O. On the existence of the maximum number of isolated eigenvalues for a lattice Schrödinger operator. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):737-748. https://doi.org/10.17586/2220-8054-2025-16-6-737-748
