Mathematical modeling of industrial ammonia synthesis using nonlinear reactiondiffusion equations
https://doi.org/10.17586/2220-8054-2025-16-6-749-754
Abstract
This study proposes a mathematical model for ammonia synthesis based on nonlinear reactiondiffusion equations. The model integrates degenerate gas diffusion in the reactor with Haber-Bosch reaction kinetics to explore efficiency and environmental sustainability. A theoretical analysis is conducted to establish the existence and stability of global solutions for the underlying degenerate parabolic system. Numerical simulations were validated against industrial data from Navoiyazot facility in Uzbekistan, demonstrating 98.2% accuracy in concentration profiles and outperforming constant-diffusivity models by 12–15% in low-concentration regions.
Keywords
About the Authors
J. KhasanovUzbekistan
Jamshid Khasanov
1A Gurlan str., Urgench 220100
S. Muminov
Uzbekistan
Sokhibjan Muminov
2 Bolkhovuz Street, Khiva 220900
S. Iskandarov
Uzbekistan
Sarvar Iskandarov
4 Kh. Alimdjan str., Urgench 220100
References
1. Temkin M., Pyzhev V. Kinetics of ammonia synthesis on iron catalysts. Acta Physicochim. URSS, 1941, 12, P. 327–356.
2. Smith C., Hill A.K., Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci., 2020, 13, P. 331–344.
3. Nielsen A. (Ed.). Ammonia: Catalysis and Manufacture. Springer, Berlin Heidelberg, 1995.
4. Nadiri A., Perez-Ram ´ ´ırez J., et al. Ammonia synthesis rate over a wide operating range: From experiments to validated kinetic models. ChemCatChem, 2024, 16, e202301462.
5. Burdyny T., van Haveren J., Smith W.A. Entropy production minimization in a tubular ammonia synthesis reactor with variable geometry. Front. Energy Res., 2025, 13, 1515577.
6. Fragnelli G., Mugnai D. Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations. Mem. Amer. Math. Soc., 2016, 242(1146).
7. Boutaayamou I., Fragnelli G., Maniar L. Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions. J. Anal. Math., 2018, 135, P. 1–35.
8. Erhardt A.H. Existence of weak solutions to a certain homogeneous parabolic Neumann problem involving cross-diffusion. J. Elliptic Parabol. Equ., 2020, 6, P. 735–772.
9. Camasta S., Fragnelli G. Degenerate fourth order parabolic equations with Neumann boundary conditions. Nonlinear Anal. Real World Appl., 2023, 67, 103573.
10. Topayev T.N., Popov A.I., Popov I.Y. On Keller-Rubinow model for Liesegang structure formation. Nanosystems: Phys. Chem. Math., 2022, 13(4), P. 365–371.
11. Maksimova M.A., Polyakov E.V., Volkov I.V., Tyutyunnik A.P., Ioshin A.A. Kinetic of colloidal-chemical transformations during the decomposition of ammonia complexes of Zn(II) in alkaline solutions. Nanosystems: Phys. Chem. Math., 2024, 15(4), P. 498–509.
12. Borisov V.A., Fedorova Z.A., Ichetovkin Z.N., et al. La and Co-based materials for ammonia decomposition: activity, stability and structural changes. Nanosystems: Phys. Chem. Math., 2025, 16(4), P. 498–509.
13. Navoiyazot JSC. Annual Technical Report: Ammonia Production Unit A-15. Internal Report, Navoi, Uzbekistan, 2022.
14. Aripov M.M. Nonlinear Degenerate and Singular Parabolic Equations. Fan Publishers, Tashkent, 1988.
15. Khasanov J.O. Mathematical modeling of processes described by cross-diffusion source and variable density. Problems of Computational and Applied Mathematics, 2022, 6(45), P. 39–47.
16. Aripov M., Matyakubov A.S., Khasanov J.O. Global solvability and explicit estimation of solutions of a cross-diffusion parabolic system in non-divergent form with a source and variable density. Bulletin of the Institute of Mathematics, 2022, 5(4), P. 22–31.
17. Aripov M., Matyakubov A.S., Khasanov J.O. To the qualitative properties of self-similar solutions of a cross-diffusion parabolic system not in divergence form with a source. AIP Conference Proceedings, 2023, 2781, 020005.
18. Muminov S., Agarwal P., Muhamediyeva D. Qualitative properties of the mathematical model of nonlinear cross-diffusion processes. Nanosystems: Phys. Chem. Math., 2024, 15(6), P. 742–748.
19. Cholewa T., Steinbach B., Heim C., Nestler F., Nanba T., Guttel R., Salem O. Reaction kinetics for ammonia synthesis using ruthenium and iron ¨ based catalysts under low temperature and pressure conditions. Sustainable Energy & Fuels, 2024, 8(10), P. 2245–2255.
20. Zecevic N. Multiscale catalyst model for ammonia synthesis: coupling kinetics, diffusion and deactivation. Reaction Kinetics, Mechanisms and Catalysis, 2025, 138, P. 3645–3664.
21. Baltaeva U.I., Alikulov Y., Baltaeva I.I., Ashirova A.I Analog of the darboux problem for a loaded integro-differential equation involving the caputo fractional derivative. Nanosystems: Phys. Chem. Math., 2021, 12(4), P. 418–424.
22. Agarwal P., Baltaeva U.I., Madrakhimov U., Baltaev J.I. The Cauchy problem for a high-order wave equation with a loaded convolution type. Nanosystems: Phys. Chem. Math., 2024, 15(4), P. 448–456.
Review
For citations:
Khasanov J., Muminov S., Iskandarov S. Mathematical modeling of industrial ammonia synthesis using nonlinear reactiondiffusion equations. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):749-754. https://doi.org/10.17586/2220-8054-2025-16-6-749-754
