Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Defective aluminum nitride monolayer as electrode material for supercapacitor applications: a DFT study

https://doi.org/10.17586/2220-8054-2025-16-6-763-769

Abstract

This paper analyzes the quantum capacitance properties of aluminum nitride nanosheets (AlNNS) with defects focusing on their potential use in supercapacitors. We validated the structural stability of the primitive cell through cohesive energy calculations and phonon spectrum analysis. Our findings indicate that monolayers containing aluminum (Al), nitrogen (N), or with Al–N deficiencies exhibit p-type/n-type or wide bandgap semiconducting state. Calculations of defect formation energy indicate that N-deficient AlNNS is the least favorable option. The presence of under-coordinated atoms near the defect leads to the emergence of new impurity state in the forbidden energy bad gap region. This prompted us for a detailed examination of their quantum capacitance, which is heavily influenced by the density of states around the Fermi energy. Our study reveals that Al-deficient AlNNS achieves a maximum quantum capacitance (CQMax) of 690 µF/cm2 in the positively biased region, making it a suitable candidate for anodic material in supercapacitor applications. In comparison, the nitrogen-deficient AlNNS reaches a CQMax of 313 µF/cm2 and a maximum surface charge capacity (QMax) of −91 µC/cm2 , highlighting its potential as a cathodic material. The Al-N-deficient AlNNS shows intermediate behavior with prominent quantum capacitance peaks in both biased regions, offering additional flexibility for potential applications.

About the Authors

Shamsuddin Ahmad
Z. A. Islamia P. G. College Siwan
India

Shamsuddin Ahmad – Department of Physics

Bihar-841226



Md. Mahfoozul Haque
T. M. Bhagalpur University
India

Md. Mahfoozul Haque – Department of Physics

Bihar-812007



Zaheer Abbas
Government Engineering College
India

Zaheer Abbas – Department of Science and Humanities

Jehanabad, Bihar-804407



Md. Shahzad Khan
Z. A. Islamia P. G. College Siwan
India

Md. Shahzad Khan – Department of Physics

Bihar-841226



References

1. Hughes Z.E., Walsh T.R. Computational chemistry for graphene-based energy applications: progress and challenges. Nanoscale, 2015, 7 (13), P. 6883–6908.

2. Ponnamma D., Vijayan P., Al Ali Al-Maadeed M. 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Mater. Des., 2017, 117, P. 203–212.

3. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41 (2), P. 797–828.

4. Pak A.J., Paek E., Hwang G.S. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid. Phys. Chem. Chem. Phys., 2013, 15 (44), P. 19741–19747.

5. Stoller M.D., Magnuson C.W., Zhu Y., Murali S., Suk J.W., Piner R., Ruoff R.S. Interfacial capacitance of single layer graphene. Energy Environ. Sci., 2011, 4 (11), P. 4685–4689.

6. Xia J., Chen F., Li J., Tao N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol., 2009, 4 (8), P. 505–509.

7. Vurgaftman I., Meyer J.N. Band parameters for nitrogen-containing semiconductors. J. Appl. Phys., 2003, 94 (6), P. 3675–3696.

8. Wu J. When group-III nitrides go infrared: New properties and perspectives. J. Appl. Phys., 2009, 106 (1), 011101.

9. Zhang Y., Liu J., He R., Zhang Q., Zhang X., Zhu J. Synthesis of aluminum nitride nanowires from carbon nanotubes. Chem. Mater., 2001, 13 (11), P. 3899–3905.

10. Wu Q., Hu Z., Wang X., Lu Y., Chen X., Xu H., Chen Y. Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc., 2003, 125 (34), P. 10176–10177.

11. Stan G., Ciobanu C.V., Thayer T.P., Wang G.T., Creighton J.R., Purushotham K.P., Cook R.F. Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology, 2008, 20 (3), 035706.

12. Zhang X., Liu Z., Hark S. Synthesis and optical characterization of single-crystalline AlN nanosheets. Solid State Commun., 2007, 143 (6-7), P. 317–320.

13. Lei M., Song B., Guo X., Guo Y.F., Li P.G., Tang W.H. Large-scale AlN nanowires synthesized by direct sublimation method. J. Eur. Ceram. Soc., 2009, 29 (1), P. 195–200.

14. Wang P., Wang T., Wang H., Sun X., Huang P., Sheng B., Wang X. Experimental evidence of large bandgap energy in atomically thin AlN. Adv. Funct. Mater., 2019, 29 (36), 1902608. [15] Han L., Li Y., Zhao Y., Meng X., Lei X., Yang X., Liu M. One-time mass production of AlN nanosheets: Synergistic effect of high-energy shear and effective collision in a sanding mill. Ceram. Int., 2024, 50 (11), P. 19642–19649.

15. Javaheri S., Babaeipour M., Boochani A., Naderi S. Electronic and optical properties of V doped AlN nanosheet: DFT calculations. Chin. J. Phys., 2018, 56 (6), P. 2698–2709.

16. Peng Y., Xia C., Zhang H., Wang T., Wei S., Jia Y. Tunable electronic structures of p-type Mg doping in AlN nanosheet. J. Appl. Phys., 2014, 116 (4), 044306.

17. Liu P., De Sarkar A., Ahuja R. Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. Comput. Mater. Sci., 2014, 86, P. 206–210.

18. Tsipas P., Kassavetis S., Tsoutsou D., Xenogiannopoulou E., Golias E., Giamini S.A., Grazianetti C. et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett., 2013, 103 (25), 251605.

19. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18), P. 3865–3868.

20. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13 (12), P. 5188–5192.

21. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 1991, 43 (3), P. 1993–2006.

22. Ordej’on P., Artacho E., Soler J.M. Self-Consistent Order-N Density-Functional Calculations for Very Large Systems. Phys. Rev. B, 1996, 53 (16), R10441–R10444.

23. Soler J.M., Artacho E., Gale J.D., Garc’ia A., Junquera J., Ordej’on P., S’anchez-Portal D. The Siesta method for ab initio order-N materials simulation. J. Phys.: Condens. Matter, 2002, 14 (11), P. 2745–2779.

24. The MathWorks Inc. Statistics and Machine Learning Toolbox Documentation, Natick, Massachusetts: The MathWorks Inc., 2022, URL: https://www.mathworks.com/help/stats/index.html.

25. Nguyen D.K., Vu T.V., Hoat D.M. Antiferromagnetic ordering in the TM-adsorbed AlN monolayer (TM = V and Cr). RSC Adv., 2022, 12 (26), P. 16677–16683.

26. SanthiBhushan B., Khan M.S., Bohat V.K., Srivastava A. Quantum capacitance estimations of pyrrolic-rich graphene for supercapacitor electrodes. IEEE Trans. Nanotechnol., 2018, 17 (2), P. 205–211.

27. Hu R., Shang J. Quantum capacitance of transition metal and nitrogen co-doped graphenes as supercapacitors electrodes: A DFT study. Appl. Surf. Sci., 2019, 496, 143659.

28. Mousavi-Khoshdel M., Targholi E., Momeni M.J. First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes. J. Phys. Chem. C, 2015, 119 (47), P. 26290–26295.

29. Khan Z.R., Abbas Z., Akhter N., Khan M.S., Khan M.S. Enhanced quantum capacitance in Ti, V, Cr, Fe, Ga, Ge, Se, and Br doped arsenene: a first principles investigation. Chem. Phys. Lett., 2023, 823, 140500.


Supplementary files

Review

For citations:


Ahmad Sh., Haque M., Abbas Z., Khan M. Defective aluminum nitride monolayer as electrode material for supercapacitor applications: a DFT study. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):763-769. https://doi.org/10.17586/2220-8054-2025-16-6-763-769

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)