Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Multilevel physical unclonable function based on silver nanostructures randomly integrated into the crystalline silicon wafer

https://doi.org/10.17586/2220-8054-2025-16-6-785-790

Abstract

We present an optical physical unclonable function (PUF) based on silver nanostructures randomly formed on a crystalline silicon wafer through galvanic displacement and thermal annealing. The process produces nanostructures with stochastic spatial distribution and morphology, resulting in unpredictable nonlinear optical responses. The hybrid Ag–Si interface generates two independent signals: photoluminescence (PL) and second-harmonic generation (SHG). Spatial PL and SHG maps were binarized and analyzed using standard PUF metrics. SHG demonstrated higher entropy and more balanced bit distribution, making it the preferred encoding channel, while PL provides an additional verification layer. The fabrication method is scalable, lithography-free, and compatible with standard silicon processing.

About the Authors

M. Fedorova
ITMO University
Russian Federation

Maria Fedorova – School of Physics and Engineering, Faculty of Physics

St. Petersburg



E. Petrova
ITMO University
Russian Federation

Elena Petrova – School of Physics and Engineering, Faculty of Physics

St. Petersburg



A. Larin
ITMO University
Russian Federation

Artem Larin – School of Physics and Engineering, Faculty of Physics

St. Petersburg



M. Sandomirskii
ITMO University
Russian Federation

Martin Sandomirskii – School of Physics and Engineering, Faculty of Physics

St. Petersburg



A. Ermina
Ioffe Institute
Russian Federation

Anna Ermina

194021, St. Petersburg



S. Pavlov
Ioffe Institute
Russian Federation

Sergey Pavlov

194021, St. Petersburg



Yu. Zharova
Ioffe Institute
Russian Federation

Yuliya Zharova

St. Petersburg



D. Permyakov
ITMO University
Russian Federation

Dmitry Permyakov – School of Physics and Engineering, Faculty of Physics

St. Petersburg



V. Yaroshenko
ITMO University
Russian Federation

Vitaly Yaroshenko – School of Physics and Engineering, Faculty of Physics

St. Petersburg



D. Zuev
ITMO University
Russian Federation

Dmitry Zuev – School of Physics and Engineering, Faculty of Physics

St. Petersburg



References

1. Kikerkova I., Toshevska Trpchevska K., Kikerkov I. Threats of trade in counterfeit pharmaceutical products. Horizons - International Scientific Journal, 2022, 31(2), P. 7–23.

2. Ofori-Parku S. Fighting the global counterfeit medicines challenge: A consumer-facing communication strategy in the US is an imperative. Journal of Global Health, 2022, 12.

3. Ali S., Kershaw S., Faisal M., Halak B., Abdelazim N. Illuminating advances in materials: optical physical unclonable functions for security applications. Advanced Optical Materials, 2025, 13(29), P. e01564.

4. Klausen M., Zhang J., Stevens M. Designing physical unclonable functions from optically active materials. Advanced Materials, 2025, P. 2502059.

5. Mishra P., Manna A., Ray N. Advances in semiconductor quantum dot-based physical unclonable functions for enhanced security applications. Nanoscale, 2025, 17, P. 20865–20879.

6. Gandla S., Moon C., Leem J., Yoon J., Yun H., Kim M., Kim D., Lee S., Yao Y., Alexandropoulos D., Song Y., Yoon D., Park W., Kim Y., Kim S. Multiplex optical unclonable functions: advances and perspectives in optics and photonics for hardware security. ACS Nano, 2025, 19(30), P. 27033–27074.

7. Junhyuk A., Taesung P., Taewoo K., Seong-Gyun I., Hanseok S., Bong-Hoon K., Seok Joon K., Soong Ju O. Nanoseed-based physically unclonable function for on-demand encryption. Science Advances, 2025, 11(17), P. eadt7527.

8. Kim J., Jeon S., In J., Nam S., Jin H., Han K., Yang G., Choi H., Kim K., Shin J., Son S., Kwon S., Kim B., Kim S. Nanoscale physical unclonable function labels based on block copolymer self-assembly. Nature Electronics, 2022, 5(7), P. 433–442.

9. Guo H., Qin Y., Wang Z., Ma Y., Wen H., Li Z., Ma Z., Li X., Tang J., Liu J. Multilevel encoding physically unclonable functions based on the multispecies structure in diamonds. Advanced Functional Materials, 2024, 34(15), P. 2304648.

10. Yang J., Li Y., Ju D., Liang F., Liu S., Song F. Bio-replicated multilevel physical unclonable fluorescent glass labels enabled by artificial intelligence authentication. Chemical Engineering Journal, 2025, 510, P. 161538.

11. Carraro C., Maboudian R., Magagnin L. Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surface Science Reports, 2007, 62(12), P. 499–525.

12. Priolo F., Gregorkiewicz T., Galli M., Krauss T. Silicon nanostructures for photonics and photovoltaics. Nature Nanotechnology, 2014, 9(1), P. 19–32.

13. Gurbatov S., Puzikov V., Storozhenko D., Modin E., Mitsai E., Cherepakhin A., Shevlyagin A., Gerasimenko A., Kulinich S., Kuchmizhak A. Multigram-Scale production of hybrid Au-Si annomaterial by laser ablation in liquid (LAL) for temperature-feedback optical nanosensing, light-to-heat conversion, and anticounterfeit labeling. ACS Appl. Mater. Interfaces, 2023, 15(2), P. 3336–3347.

14. Makarov S., Sinev I., Milichko V., Komissarenko F., Zuev D., Ushakova E., Mukhin I., Yu Y., Kuznetsov A., Belov P., Iorsh I., Poddubny A., Samusev A., Kivshar Yu. Nanoscale generation of white light for ultrabroadband nanospectroscopy. Nano Lett., 2018, 18(1), P. 535–539.

15. Makarov S., Petrov M., Zywietz U., Milichko V., Zuev D., Lopanitsyna N., Kuksin A., Mukhin I., Zograf G., Ubyivovk E., Smirnova D., Starikov S., Chichkov B., Kivshar Yu. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett., 2017, 17(5), P. 3047–3053.

16. Sandomirskii M., Petrova E., Kustov P., Chizhov L., Larin A., Bruyere S., Yaroshenko V., Ageev E., Belov P., Zuev D. Spectral physical unclonable ` functions: downscaling randomness with multi-resonant hybrid particles. Nature Communications, 2025, 16(1), P. 5097.

17. McMahon M., Lopez R., Meyer III H., Feldman L., Haglund Jr R. Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 2005, 80(7), P. 915–921.

18. Wang K., Shi J., Lai W., He Q., Xu J., Ni Z., Liu X., Pi X., Yang D. All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting. Nature Communications, 2024, 15(1), P. 3203.

19. Lin X., Li Q., Tang Y., Chen Z., Chen R., Sun Y., Lin W., Yi G., Li Q. Physical unclonable functions with hyperspectral imaging system for ultrafast storage and authentication enabled by random structural color domains. Advanced Science, 2024, 11(31), P. 2401983.

20. Jiao F., Lin C., Dong L., Wu Y., Xiao Y., Zhang Z., Sun J., Zhao W., Li S., Yang X., Ni P., Wang L., Shan C. Traceable optical physical unclonable functions based on germanium vacancy in diamonds. ACS Applied Materials & Interfaces, 2024, 16(33), P. 44328-44339.

21. Balijabudda V., Acharya K., Chakraborty R., Chakrabarti I. Theoretical enumeration of deployable single-output strong PUF instances based on uniformity and uniqueness constraints. Proceeding of “19th International Conference, ICISS 2023”, Raipur, India, 16-20 December 2023, Springer Nature Switzerland, P. 77–87.

22. Gandla S., Moon C., Leem J., Yoon J., Yun H., Kim M., Kim D., Lee S., Yao Y., Alexandropoulos D., Song Y., Yoon D., Park W., Kim Y., Kim S. Multiplex optical unclonable functions: advances and perspectives in optics and photonics for hardware security. ACS Nano, 2025, 19(30), P. 27033–27074.


Review

For citations:


Fedorova M., Petrova E., Larin A., Sandomirskii M., Ermina A., Pavlov S., Zharova Yu., Permyakov D., Yaroshenko V., Zuev D. Multilevel physical unclonable function based on silver nanostructures randomly integrated into the crystalline silicon wafer. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):785-790. https://doi.org/10.17586/2220-8054-2025-16-6-785-790

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)