UV-tuning the redox properties of nanoscale cerium dioxide and its enzyme conjugates
https://doi.org/10.17586/2220-8054-2025-16-6-791-801
Abstract
This study investigated the redox properties of cerium oxide nanoparticles (CeO2 NPs) and their conjugates with superoxide dismutase (SOD) or horseradish peroxidase (HRP) as well as the UV-induced modulation of these properties. UV exposure non-monotonically decreased the SOD-like property of the bare CeO2 NPs. The CeO2 conjugates with enzymes were analyzed both immediately after preparation and after being aged for 3 h. Chemiluminescence assays showed the synergistic effect for the CeO2-SOD conjugates which showed high SOD activity. Additionally, CeO2 NPs enhanced the stability of the conjugated SOD under UV exposure thus demonstrating a photoprotective function. The CeO2-HRP conjugates demonstrated lower prooxidant activity compared to the bare enzyme, however higher stability under UV irradiation. The effect of UV radiation on CeO2-HRP conjugates was found to be multidirectional and depended on the incubation time f the CeO2 NPs with the enzyme. The results demonstrated that CeO2-enzyme conjugates offer tunable dual functionality and UV light could be an important parameter affecting their redox properties. The latter be taken into account for designing advanced cosmeceutical formulations.
Keywords
About the Authors
M. M. SozarukovaRussian Federation
Madina M. Sozarukova
Leninskii prospect 31, Moscow, 119991
A. D. Filippova
Russian Federation
Arina D. Filippova
Leninskii prospect 31, Moscow, 119991
D.-M. V. Ratova
Russian Federation
Daria-Maria V. Ratova – Analytical Chemistry Division, Chemistry Department
d. 1, Str. 3, Lenin Hills, GSP-1, Moscow, 119234
I. V. Mikheev
Russian Federation
Ivan V. Mikheev – Analytical Chemistry Division, Chemistry Department
d. 1, Str. 3, Lenin Hills, GSP-1, Moscow, 119234
E. V. Proskurnina
Russian Federation
Elena V. Proskurnina
Leninskii prospect 31, Moscow, 119991
A. E. Baranchikov
Russian Federation
Alexander E. Baranchikov
Leninskii prospect 31, Moscow, 119991
V. K. Ivanov
Russian Federation
Vladimir K. Ivanov
Leninskii prospect 31, Moscow, 119991
References
1. Mishra P., Lee J., Kumar D., et al. Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater., 2022, 32 (1), 2108650.
2. Ma Y., Tian Z., Zhai W., Qu Y. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res., 2022, 15 (10), P. 10328–10342.
3. Thakur N., Manna P., Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnol., 2019, 17 (1), 84.
4. Ilhan H., Ayvaz M.C. Evaluation of enzyme activity with nanoparticles conjugation. Recent Adv. Mol. Biol. Biochem., 2023, 223.
5. Gil D., Rodriguez J., Ward B., et al. Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering, 2017, 4 (1), 18.
6. Ding S., Cargill A.A., Medintz I.L., et al. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol., 2015, 34, P. 242–250.
7. Ahmad R., Sardar M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4 (1), 1.
8. Sozarukova M.M., Proskurnina E.V., Mikheev I.V., et al. Anti- and prooxidant properties of cerium oxide nanoparticles functionalized with gallic acid. Russ. J. Inorg. Chem., 2023, 68 (10), P. 1108–1116.
9. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. Antioxidant activity of conjugates of cerium dioxide nanoparticles with human serum albumin isolated from biological fluids. Russ. J. Inorg. Chem., 2023, 68 (10), P. 1495–1502.
10. Lasala P., Latronico T., Mattia U., et al. Enhancing antioxidants performance of ceria nanoparticles in biological environment via surface engineering with o-quinone functionalities. Antioxidants, 2025, 14 (6), 916.
11. Pudlarz A.M., Czechowska E., Karbownik M.S., et al. The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine, 2020, 15 (1), P. 23–39.
12. Sozarukova M.M., Kochneva E.M., Proskurnina E.V., et al. Albumin retains its transport function after interaction with cerium dioxide nanoparticles. ACS Biomater. Sci. Eng., 2023, 9 (12), P. 6759–6772.
13. McCord J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108 (6), P. 652–659.
14. Hensley K., Robinson K.A., Gabbita S.P., et al. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med., 2000, 28 (10), P. 1456–1462.
15. Chen D., Ai X., Li Y., et al. Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin. Acta Histochem., 2023, 125, 152030.
16. Baldim V., Bedioui F., Mignet N., et al. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 2018, 10 (14), P. 6971–6980.
17. Heckert E.G., Karakoti A.S., Seal S., et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29 (18), P. 2705–2709.
18. Sozarukova M.M., Shestakova M.A., Teplonogova M.A., et al. Quantification of free radical scavenging properties and SOD-like activity of cerium dioxide nanoparticles in biochemical models. Russ. J. Inorg. Chem., 2020, 65 (4), P. 597–605.
19. Korsvik C., Patil S., Seal S., et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, P. 1056–1058.
20. Sozarukova M.M., Kozlova T.O., Beshkareva T.S., et al. Gadolinium doping modulates the enzyme-like activity and radical-scavenging properties of CeO2 nanoparticles. Nanomaterials, 2024, 14 (5), 769.
21. Shi X., Yang J., Wen X., et al. Oxygen vacancy enhanced biomimetic superoxide dismutase activity of CeO2-Gd nanozymes. J. Rare Earths, 2021, 39 (10), P. 1108–1116.
22. Li Y., He X., Yin J.J., et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem. Int. Ed., 2015, 54 (7), P. 1852–1855.
23. Zhu A., Sun K., Petty H.R. Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO2 nanoparticles. Inorg. Chem. Commun., 2012, 15 (2), P. 235–237.
24. Yadav N., Singh S. Polyoxometalate-mediated vacancy-engineered cerium oxide nanoparticles exhibiting controlled biological enzyme-mimicking activities. Inorg. Chem., 2021, 60 (15), P. 7475–7489.
25. Baranchikov A.E., Sozarukova M.M., Mikheev I.V., et al. Biocompatible ligands modulate nanozyme activity of CeO2 nanoparticles. New J. Chem., 2023, 47 (52), P. 20388–20404.
26. Damle M.A., Jakhade A.P., Chikate R.C. Modulating pro- and antioxidant activities of nanoengineered cerium dioxide nanoparticles against Escherichia coli. ACS Omega, 2019, 4 (3), P. 3761–3771.
27. McCormack R.N., Mendez P., Barkam S., et al. Inhibition of nanoceria’s catalytic activity due to Ce3+ site-specific interaction with phosphate ions. J. Phys. Chem. C, 2014, 118 (33), P. 18992–19006.
28. Xu C., Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 2014, 6 (3), e90.
29. Alpaslan E., Geilich B.M., Yazici H., et al. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci. Rep., 2017, 7 (1), 45859.
30. Pandey S., Kumari S., Manohar Aeshala L., et al. Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application. J. Biomater. Appl., 2024, 38 (7), P. 866–874.
31. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E., et al. CeO2 nanoparticles as free radical regulators in biological systems. Nanosyst.: Phys. Chem. Math., 2020, 11 (3), P. 324–332.
32. Klochkov V., Malyukin Y.V., Grygorova G., et al. Oxidation-reduction processes in CeO2−x nanocrystals under UV irradiation. J. Photochem. Photobiol. A Chem., 2018, 364, P. 282–287.
33. Zholobak N., Ivanov V., Shcherbakov A., et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B Biol., 2011, 102 (1), P. 32–38.
34. Wenk J., Brenneisen P., Meewes C., et al. UV-induced oxidative stress and photoaging. Curr. Probl. Dermatol., 2001, 29, P. 83–94.
35. Pattison D.I., Rahmanto A.S., Davies M.J. Photo-oxidation of proteins. Photochem. Photobiol. Sci., 2012, 11 (1), P. 38–53.
36. Sozarukova M.M., Skachko N.A., Chilikina P.A., et al. Effect of low-dose line-spectrum and full-spectrum UV on major humoral components of human blood. Molecules, 2023, 28 (12), 4646.
37. Plakhova T.V., Romanchuk A.Y., Butorin S.M., et al. Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 2019, 11 (43), P. 18142–18149.
38. Madaeni S., Ghaemi N., Alizadeh A., et al. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes. Appl. Surf. Sci., 2011, 257 (15), P. 6175–6180.
39. Jimmy C.Y., Yu J., Ho W., Zhao, J. Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. J. Photochem. Photobiol. A Chem., 2002, 148 (2–3), P. 331–339.
40. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S., et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Mater. Res. Express, 2017, 4 (5), 055008.
41. Liochev S.I., Fridovich I. Lucigenin as mediator of superoxide production: Revisited. Free Radic. Biol. Med., 1998, 25 (9), P. 926–928.
42. Afanas’ev I.B. Lucigenin chemiluminescence assay for superoxide detection. Circ. Res., 2001, 89 (11), e46.
43. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. Prooxidant potential of CeO2 nanoparticles towards hydrogen peroxide. Nanosyst.: Phys. Chem. Math., 2021, 12 (3), P. 283–290.
44. Huber R., Stoll S. Protein affinity for TiO2 and CeO2 manufactured nanoparticles. From ultra-pure water to biological media. Colloids Surf. A, 2018, 553, P. 425–431.
45. Sendra M., Volland M., Balbi T., et al. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquat. Toxicol., 2018, 200, P. 13–20.
46. Socrates G. Infrared and raman characteristic group frequencies: Tables and charts. John Wiley & Sons, Chichester, 2004, 368 p.
47. Bellamy L.J. The infra-red spectra of complex molecules. Springer Science & Business Media, London, 2013, 433 p.
48. Rokhsat E., Akhavan O. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci., 2016, 371, P. 590–595.
49. Wu T.-S., Syu L.-Y., Lin C.-N., et al. Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals. Sci. Rep., 2019, 9 (1), 8018.
50. Gil D.O., Dolgopolova E.A, Shekunova T.O., et al. Photoprotector properties of ceria-based solid solutions. Nanosyst.: Phys. Chem. Math., 2013, 4 (1), P. 78–82. (In Russian).
51. Calvache-Munoz J., Rodr ˜ ´ıguez-Paez J.E. Removal of rhodamine 6G in the absence of UV radiation using ceria nanoparticles (CeO ´ 2-NPs). J. Environ. Chem. Eng., 2020, 8 (1), 103518.
52. Zhang L., Jiang H., Selke M., Wang, X. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation. J. Biomed. Nanotechnol., 2014, 10 (2), P. 278–286.
53. Osman R., Basch H. On the mechanism of action of superoxide dismutase: A theoretical study. J. Am. Chem. Soc., 1984, 106 (19), P. 5710–5714.
54. Noodleman L., Lovell T., Han W.-G., et al. Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem. Rev., 2004, 104 (2), P. 459–508.
55. Marquette C.A., Blum L.J. Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal. Bioanal. Chem., 2006, 385 (3), P. 546–554.
56. Kobayashi H., Gil-Guzman E., Mahran A.M., et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J. Androl., 2001, 22 (4), P. 568–574.
57. Gao L., Giglio K.M., Nelson J.L., et al. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale, 2014, 6 (5), P. 2588–2593.
58. Corgie S.C., Kahawong P., Duan X., et al. Self-assembled complexes of horseradish peroxidase with magnetic nanoparticles showing enhanced ´ peroxidase activity. Adv. Funct. Mater., 2012, 22 (9), P. 1940–1951.
59. Neves-Petersen M.T., Klitgaard S., Carvalho A.S.L., et al. Photophysics and photochemistry of horseradish peroxidase A2 upon ultraviolet illumination. Biophys. J., 2007, 92 (6), P. 2016–2027.
60. Falguera V., Moulin A., Thevenet L., Ibarz A. Inactivation of peroxidase by ultraviolet–visible irradiation: Effect of pH and melanoidin content. Food Bioprocess Technol., 2013, 6 (4), P. 3627–3633.
Review
For citations:
Sozarukova M.M., Filippova A.D., Ratova D.V., Mikheev I.V., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. UV-tuning the redox properties of nanoscale cerium dioxide and its enzyme conjugates. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):791-801. https://doi.org/10.17586/2220-8054-2025-16-6-791-801
