УФ-модуляция редокс-свойств нанодисперсного диоксида церия и его конъюгатов с ферментами
https://doi.org/10.17586/2220-8054-2025-16-6-791-801
Аннотация
В настоящей работе исследовано влияние УФ-облучения на редокс-свойства нанодисперсного диоксида церия и его конъюгатов с ферментами – супероксиддисмутазой (СОД) и пероксидазой из корней хрена. По данным хемилюминесцентного анализа, наночастицы СеО2 обладают СОД-подобной активностью, при этом радикал-перехватывающие свойства конъюгатов СеО2 с ферментом СОД значительно усиливаются за счет синергетического эффекта. Установлено, что воздействие УФ-облучения снижает СОД-подобную активность наночастиц СеО2 и их конъюгатов с СОД. В составе конъюгатов нанодисперсный диоксид церия повышает устойчивость СОД к окислительной деструкции, вызванной УФ-облучением, что свидетельствует о фотопротекторных свойствах наночастиц СеО2. Конъюгаты нанодисперсного СеО2 с пероксидазой из корней хрена проявляют значительно меньшую прооксидатную активность, но большую фотостабильность по сравнению с индивидуальным ферментом. Влияние УФ-облучения на прооксидантные свойства конъюгатов СеО2 с пероксидазой из корней хрена носило разнонаправленный характер и зависело от времени взаимодействия диоксида церия с белком. Результаты подтверждают, что конъюгаты наночастиц СеО2 с ферментами обладают активностью, модулируемой в том числе УФ-излучением, что следует учитывать при разработке современных космецевтических препаратов.
Ключевые слова
Об авторах
М. М. СозаруковаРоссия
А. Д. Филиппова
Россия
Д. М. Ратова
Россия
И. В. Михеев
Россия
Е. В. Проскурнина
Россия
А. Е. Баранчиков
Россия
В. К. Иванов
Россия
Список литературы
1. Mishra P., Lee J., Kumar D., et al. Engineered nanoenzymes with multifunctional properties for next-generation biological and environmental applications. Adv. Funct. Mater., 2022, 32 (1), 2108650.
2. Ma Y., Tian Z., Zhai W., Qu Y. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res., 2022, 15 (10), P. 10328–10342.
3. Thakur N., Manna P., Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J. Nanobiotechnol., 2019, 17 (1), 84.
4. Ilhan H., Ayvaz M.C. Evaluation of enzyme activity with nanoparticles conjugation. Recent Adv. Mol. Biol. Biochem., 2023, 223.
5. Gil D., Rodriguez J., Ward B., et al. Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering, 2017, 4 (1), 18.
6. Ding S., Cargill A.A., Medintz I.L., et al. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol., 2015, 34, P. 242–250.
7. Ahmad R., Sardar M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4 (1), 1.
8. Sozarukova M.M., Proskurnina E.V., Mikheev I.V., et al. Anti- and prooxidant properties of cerium oxide nanoparticles functionalized with gallic acid. Russ. J. Inorg. Chem., 2023, 68 (10), P. 1108–1116.
9. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. Antioxidant activity of conjugates of cerium dioxide nanoparticles with human serum albumin isolated from biological fluids. Russ. J. Inorg. Chem., 2023, 68 (10), P. 1495–1502.
10. Lasala P., Latronico T., Mattia U., et al. Enhancing antioxidants performance of ceria nanoparticles in biological environment via surface engineering with o-quinone functionalities. Antioxidants, 2025, 14 (6), 916.
11. Pudlarz A.M., Czechowska E., Karbownik M.S., et al. The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine, 2020, 15 (1), P. 23–39.
12. Sozarukova M.M., Kochneva E.M., Proskurnina E.V., et al. Albumin retains its transport function after interaction with cerium dioxide nanoparticles. ACS Biomater. Sci. Eng., 2023, 9 (12), P. 6759–6772.
13. McCord J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108 (6), P. 652–659.
14. Hensley K., Robinson K.A., Gabbita S.P., et al. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med., 2000, 28 (10), P. 1456–1462.
15. Chen D., Ai X., Li Y., et al. Protective effects of Cu/Zn-SOD and Mn-SOD on UVC radiation-induced damage in NIH/3T3 cells and murine skin. Acta Histochem., 2023, 125, 152030.
16. Baldim V., Bedioui F., Mignet N., et al. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 2018, 10 (14), P. 6971–6980.
17. Heckert E.G., Karakoti A.S., Seal S., et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29 (18), P. 2705–2709.
18. Sozarukova M.M., Shestakova M.A., Teplonogova M.A., et al. Quantification of free radical scavenging properties and SOD-like activity of cerium dioxide nanoparticles in biochemical models. Russ. J. Inorg. Chem., 2020, 65 (4), P. 597–605.
19. Korsvik C., Patil S., Seal S., et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, P. 1056–1058.
20. Sozarukova M.M., Kozlova T.O., Beshkareva T.S., et al. Gadolinium doping modulates the enzyme-like activity and radical-scavenging properties of CeO2 nanoparticles. Nanomaterials, 2024, 14 (5), 769.
21. Shi X., Yang J., Wen X., et al. Oxygen vacancy enhanced biomimetic superoxide dismutase activity of CeO2-Gd nanozymes. J. Rare Earths, 2021, 39 (10), P. 1108–1116.
22. Li Y., He X., Yin J.J., et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem. Int. Ed., 2015, 54 (7), P. 1852–1855.
23. Zhu A., Sun K., Petty H.R. Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO2 nanoparticles. Inorg. Chem. Commun., 2012, 15 (2), P. 235–237.
24. Yadav N., Singh S. Polyoxometalate-mediated vacancy-engineered cerium oxide nanoparticles exhibiting controlled biological enzyme-mimicking activities. Inorg. Chem., 2021, 60 (15), P. 7475–7489.
25. Baranchikov A.E., Sozarukova M.M., Mikheev I.V., et al. Biocompatible ligands modulate nanozyme activity of CeO2 nanoparticles. New J. Chem., 2023, 47 (52), P. 20388–20404.
26. Damle M.A., Jakhade A.P., Chikate R.C. Modulating pro- and antioxidant activities of nanoengineered cerium dioxide nanoparticles against Escherichia coli. ACS Omega, 2019, 4 (3), P. 3761–3771.
27. McCormack R.N., Mendez P., Barkam S., et al. Inhibition of nanoceria’s catalytic activity due to Ce3+ site-specific interaction with phosphate ions. J. Phys. Chem. C, 2014, 118 (33), P. 18992–19006.
28. Xu C., Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 2014, 6 (3), e90.
29. Alpaslan E., Geilich B.M., Yazici H., et al. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci. Rep., 2017, 7 (1), 45859.
30. Pandey S., Kumari S., Manohar Aeshala L., et al. Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application. J. Biomater. Appl., 2024, 38 (7), P. 866–874.
31. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E., et al. CeO2 nanoparticles as free radical regulators in biological systems. Nanosyst.: Phys. Chem. Math., 2020, 11 (3), P. 324–332.
32. Klochkov V., Malyukin Y.V., Grygorova G., et al. Oxidation-reduction processes in CeO2−x nanocrystals under UV irradiation. J. Photochem. Photobiol. A Chem., 2018, 364, P. 282–287.
33. Zholobak N., Ivanov V., Shcherbakov A., et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B Biol., 2011, 102 (1), P. 32–38.
34. Wenk J., Brenneisen P., Meewes C., et al. UV-induced oxidative stress and photoaging. Curr. Probl. Dermatol., 2001, 29, P. 83–94.
35. Pattison D.I., Rahmanto A.S., Davies M.J. Photo-oxidation of proteins. Photochem. Photobiol. Sci., 2012, 11 (1), P. 38–53.
36. Sozarukova M.M., Skachko N.A., Chilikina P.A., et al. Effect of low-dose line-spectrum and full-spectrum UV on major humoral components of human blood. Molecules, 2023, 28 (12), 4646.
37. Plakhova T.V., Romanchuk A.Y., Butorin S.M., et al. Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 2019, 11 (43), P. 18142–18149.
38. Madaeni S., Ghaemi N., Alizadeh A., et al. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes. Appl. Surf. Sci., 2011, 257 (15), P. 6175–6180.
39. Jimmy C.Y., Yu J., Ho W., Zhao, J. Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. J. Photochem. Photobiol. A Chem., 2002, 148 (2–3), P. 331–339.
40. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S., et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Mater. Res. Express, 2017, 4 (5), 055008.
41. Liochev S.I., Fridovich I. Lucigenin as mediator of superoxide production: Revisited. Free Radic. Biol. Med., 1998, 25 (9), P. 926–928.
42. Afanas’ev I.B. Lucigenin chemiluminescence assay for superoxide detection. Circ. Res., 2001, 89 (11), e46.
43. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. Prooxidant potential of CeO2 nanoparticles towards hydrogen peroxide. Nanosyst.: Phys. Chem. Math., 2021, 12 (3), P. 283–290.
44. Huber R., Stoll S. Protein affinity for TiO2 and CeO2 manufactured nanoparticles. From ultra-pure water to biological media. Colloids Surf. A, 2018, 553, P. 425–431.
45. Sendra M., Volland M., Balbi T., et al. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquat. Toxicol., 2018, 200, P. 13–20.
46. Socrates G. Infrared and raman characteristic group frequencies: Tables and charts. John Wiley & Sons, Chichester, 2004, 368 p.
47. Bellamy L.J. The infra-red spectra of complex molecules. Springer Science & Business Media, London, 2013, 433 p.
48. Rokhsat E., Akhavan O. Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl. Surf. Sci., 2016, 371, P. 590–595.
49. Wu T.-S., Syu L.-Y., Lin C.-N., et al. Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals. Sci. Rep., 2019, 9 (1), 8018.
50. Gil D.O., Dolgopolova E.A, Shekunova T.O., et al. Photoprotector properties of ceria-based solid solutions. Nanosyst.: Phys. Chem. Math., 2013, 4 (1), P. 78–82. (In Russian).
51. Calvache-Munoz J., Rodr ˜ ´ıguez-Paez J.E. Removal of rhodamine 6G in the absence of UV radiation using ceria nanoparticles (CeO ´ 2-NPs). J. Environ. Chem. Eng., 2020, 8 (1), 103518.
52. Zhang L., Jiang H., Selke M., Wang, X. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation. J. Biomed. Nanotechnol., 2014, 10 (2), P. 278–286.
53. Osman R., Basch H. On the mechanism of action of superoxide dismutase: A theoretical study. J. Am. Chem. Soc., 1984, 106 (19), P. 5710–5714.
54. Noodleman L., Lovell T., Han W.-G., et al. Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem. Rev., 2004, 104 (2), P. 459–508.
55. Marquette C.A., Blum L.J. Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal. Bioanal. Chem., 2006, 385 (3), P. 546–554.
56. Kobayashi H., Gil-Guzman E., Mahran A.M., et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J. Androl., 2001, 22 (4), P. 568–574.
57. Gao L., Giglio K.M., Nelson J.L., et al. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale, 2014, 6 (5), P. 2588–2593.
58. Corgie S.C., Kahawong P., Duan X., et al. Self-assembled complexes of horseradish peroxidase with magnetic nanoparticles showing enhanced ´ peroxidase activity. Adv. Funct. Mater., 2012, 22 (9), P. 1940–1951.
59. Neves-Petersen M.T., Klitgaard S., Carvalho A.S.L., et al. Photophysics and photochemistry of horseradish peroxidase A2 upon ultraviolet illumination. Biophys. J., 2007, 92 (6), P. 2016–2027.
60. Falguera V., Moulin A., Thevenet L., Ibarz A. Inactivation of peroxidase by ultraviolet–visible irradiation: Effect of pH and melanoidin content. Food Bioprocess Technol., 2013, 6 (4), P. 3627–3633.
Рецензия
Для цитирования:
Созарукова М.М., Филиппова А.Д., Ратова Д.М., Михеев И.В., Проскурнина Е.В., Баранчиков А.Е., Иванов В.К. УФ-модуляция редокс-свойств нанодисперсного диоксида церия и его конъюгатов с ферментами. Наносистемы: физика, химия, математика. 2025;16(6):791-801. https://doi.org/10.17586/2220-8054-2025-16-6-791-801
For citation:
Sozarukova M.M., Filippova A.D., Ratova D.V., Mikheev I.V., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. UV-tuning the redox properties of nanoscale cerium dioxide and its enzyme conjugates. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):791-801. https://doi.org/10.17586/2220-8054-2025-16-6-791-801
