Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Thermodynamic analysis of nanocrystal formation in the TiO2–H2O (NaOH, HCl) system

https://doi.org/10.17586/2220-8054-2025-16-6-802-811

Abstract

A thermodynamic analysis of the crystallization of titanium dioxide in the anatase, brookite, and rutile modifications from aqueous salt solutions was performed, taking into account the influence of medium pH, temperature, reagent concentration, and the specific surface energy (σ) of the phases. It was shown that the choice of the σ value for the thermodynamic analysis of anatase crystallization is decisive: at σA = 0.3 J/m2 , the minimum particle size is determined by the crystallochemical criterion (lmin ∼5–7 nm), while at σA = 1.3 J/m2 , it is determined by thermodynamic criteria (dcrit ∼8 nm, deq ∼12 nm). Using σ values most closely approximating the conditions of a hydrated TiO2 surface (σR = 1.79, σB = 1.0, σA = 1.13 J/m2 ), the regions of possible crystallization for each modification were determined. Rutile can crystallize in a relatively wide pH range of 0.8–14 (25 ◦C) and 1.1–10.2 (200 ◦C), and the minimum particle sizes of rutile under these conditions are determined by thermodynamic criteria – dcrit and deq. For brookite and anatase in acidic and alkaline conditions (pH ∼1–3 and 9–14), the minimum particle sizes, as for rutile, are also determined by thermodynamic criteria, whereas in the neutral region, they are determined by the crystallochemical criterion lmin. Based on the analysis of structural transitions, it was established that anatase can transform into rutile or brookite at particle sizes larger than ∼16 nm. The calculated size for the brookite → rutile transition is ∼712 nm.

About the Authors

D. P. Elovikov
Branch of Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Dmitry P. Elovikov

St. Petersburg



O. V. Almjasheva
Branch of Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Oksana V. Almjasheva

St. Petersburg



V. V. Gusarov
Branch of Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Victor V. Gusarov

St. Petersburg



References

1. Dachille F., Simons P.Y, Roy R. Pressure-temperature studies of anatase, brookite, rutile and TiO2-II. Am. Mineralogist, 1968, 53, P. 1929–1938.

2. Wells A.F. Structural Inorganic Chemistry. Oxford University Press, London W1, 1975, P. 109.

3. Chemseddine A., Moritz T. Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem., 1999, 2, P. 235–245.

4. Rempel A.A. Nonstoichiometry and defect structure of titanium dioxide. Russian Chemical Reviews, 1994, 63(4), P. 303–326

5. Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. Journal of Materials science, 2011, 46(4), P. 855–874.

6. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1031–1049

7. Yamakata A., Vequizo J.J.M. Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, P. 234–243.

8. Manzoli M., Freyria F.S., Blangetti N., Bonelli B. Brookite, a sometimes under evaluated TiO2 polymorph. RSC Advances, 2022. 12(6), P. 3322– 3334.

9. Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin, Hidayat S., Takei T., Kumada N., Rahayu I. Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity. Nanomaterials, 2023, 13(4), P. 704.

10. Zhang H., Banfield J. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chemical Reviews, 2014. 114(19), P. 9613–9644.

11. Pletnev R.N., Ivakin A.A., Kleshchev D.G., Denisova T.A., Burmistrov V.A. Hydrated Oxides of the Group IV and V Elements, 1986, P. 186.

12. Onorin S.A. Structure of X-ray-amorphous hydrated titanium dioxide. Russian Journal of Inorganic Chemistry, 1992, 37(6), P. 1228–1232.

13. Reyes-Coronado D., Rodrıguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., de Coss R., Oskam G. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14), P. 145605.

14. Zhang H., Banfield J. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. The Journal of Physical Chemistry, 2000, 104(15), P. 3481–3487.

15. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian Journal of Inorganic Chemistry, 2007, 52(11), P. 1648–1656.

16. Dorosheva I.B., Valeeva A.A., Rempel A.A. Sol-gel synthesis of nanosized titanium dioxide at various pH of the initial solution. AIP Conference Proceedings, 2017, 1886(020006). [17] Zlobin V.V., Krasilin A.A., Almjasheva O.V. Effect of heterogeneous inclusions on the formation of TiO2 nanocrystals in hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics., 2019, 10(6), P. 733–739.

17. Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. Titanium dioxide nanotubes: Synthesis, structure, properties and applications. Russian Chemical Reviews, 2021, 90(11), P. 1397–1414.

18. Zlobin V.V., Nevedomskiy V.N., Almjasheva O.V. Formation and growth of anatase TiO2 nanocrystals under hydrothermal conditions. Materials Today Communications, 2023, 36, P. 106436.

19. Onorin S.A., Khodyashev M.B., Denisova T.A., Zakharov N.D. Effect of synthesis conditions on structure and ion-exchange properties of hydrous titanium dioxide. Russian Journal of Inorganic Chemistry, 1992, 37(6), P. 612–615.

20. Onorin S.A., Khodyashev M.B., Zakharov N.D. Physicochemical studies of hydrated titanium dioxide and products of sorption of As and Na ions on it. Russian Journal of Inorganic Chemistry, 1992, 37(6), P. 1223–1227.

21. Roy P., Berger S., Schmuki P. TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13), P. 2904–2939.

22. Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews, 2012, 13(3), P. 169–189.

23. Lebedev V.A., Kozlov D.A., Kolesnik I.V., Poluboyarinov A.S., Becerikli A.E., Grunert W., Garshev A.V. The amorphous phase in titania and its ¨ influence on photocatalytic properties. Applied Catalysis B: Environmental, 2016, 195, P. 39–47.

24. Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: a review. Environmental Science and Pollution Research, 2019, 26(4), P. 3262–3291.

25. Kolesnik I.V., Lebedev V.A., Garshev A.V. Optical properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 401–409.

26. Rempel A.A., Valeeva A.A. Nanostructured titanium dioxide for medicinal chemistry. Russian Chemical Bulletin, 2019, 68(12), P. 2163–2171.

27. Rempel A.A. Functional nanomaterials based on modified titanium dioxide. Russian Chemical Bulletin, 2024, 73(8), P. 2144–2151.

28. Kumar A., Pandey G. Different methods used for the synthesis of TiO2 based nanomaterials: A review. Am. J. Nano Res. Appl., 2018. 6(1), P. 1-10.

29. Mironyuk I.F., Soltys L.M., Tatarchuk T.R., Savka K.O. Methods of titanium dioxide synthesis. Physics and Chemistry of Solid State, 2020, 21(3), P. 462–477.

30. Wang Z., Liu S., Cao X., et al. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods. Ceramics International, 2020, 46(10), P. 15333–15341.

31. Hu Y., Pan D., Zhang Z., et al. Preparation of CunCo1Ox catalysts by co-precipitation method for catalytic oxidation of toluene. Journal of Molecular Structure, 2025, 1326, P. 141139.

32. Tian Z.M., Yuan S.L., He J.H., et al. Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method. Journal of Alloys and Compounds, 2008, 466(1-2), P. 26–30.

33. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. Russian Chemical Reviews, 2020, 89(6), P. 629–666.

34. Enikeeva M.O., Proskurina O.V., Levin A.A., Smirnov A.V., Nevedomskiy V.N., Gusarov V.V. Structure of Y0.75La0.25PO4 · 0.67H2O rhabdophane nanoparticles synthesized by the hydrothermal microwave method. Journal of Solid State Chemistry, 2023, 319, P. 123829.

35. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(6), P. 810.

36. Lomakin M.S., Proskurina O.V., Sergeev A.A., Buryanenko I.V., Semenov V.G., Voznesenskiy S.S., Gusarov V.V. Crystal Structure and Optical Properties of the Bi–Fe–W–O Pyrochlore Phase Synthesized via a Hydrothermal Method. J. Alloys Compd., 2021, 889, P. 161598.

37. Elovikov D.P., Proskurina O.V., Gusarov V.V. Formation of Alunite-type Compounds in the Bi2O3–Al2O3–Fe2O3–P2O5–H2O System under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2025, 70(7), P. 960–967.

38. Tabesh S., Davar F., Loghman-Estarki M.R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloys Comp., 2018, 730, P. 441–449.

39. Zhang H., Ke H., Ying P., Luo H., Zhang L., Wang W., Jia D., Zhou Y. Crystallisation process of Bi5Ti3FeO15 multiferroic nanoparticles synthesized by a sol–gel method. J. Sol-Gel Sci. Technol., 2018, 85(1), P. 132–139.

40. El-Cheikh A.Z.F., Kwapinski W., Ahmad M.N., Leahy J.J., El-Rassy H. Nanoporous ZnO/SiO2 aerogel and xerogel composites via a one-pot sol–gel process at room temperature. RSC Adv RSC Advances, 2025, 15(47), P. 39566–39577.

41. Belghiti M., El Mersly L., Tanji K., Belkodia K., Lamsayety I., Ouzaouit K., Foqir H., Benzakour I., Rofqah S., Outzourhit A. Sol-gel combined mechano-thermal synthesis of Y2O3, CeO2, and PdO partially coated ZnO for sulfamethazine and basic yellow 28 photodegradation under UV and visible light. Optical Materials, 2023, 136, P. 113458.

42. Tang H., Hu Q., Jiang F., Jiang W., Liu J., Chen T., Feng G., Wang T., Luo W. Size control of CZrSiO4 pigments via soft mechano-chemistry assisted non-aqueous sol-gel method and their application in ceramic glaze. Ceramics International, 2019, 45(8), P. 10756–10764.

43. Gurule A.C., Gaikwad S.S., Kajale D.D., Shinde V.S., Jadhav G.R., Gaikwad V.B. Synthesis of magnesium oxide nanoparticles via hydrothermal and sol-gel methods: Charaterization and their application for H2S and NO2 gas sensing. Journal of the Indian Chemical Society, 2025, 102(1), P. 101496.

44. Zhang H., Banfield J. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 1998, 8, P. 2073–2076.

45. Almjasheva O.V. Formation of oxide nanocrystals and nanocomposites under hydrothermal conditions, structure and properties of materials based on them. Abstract of a dissertation for the degree of Doctor of Chemical Sciences: specialty 02.00.21, St. Petersburg, 2017 (in Russian)

46. Kalaivani T., Anilkumar P. Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method. Silicon, 2018, 10(4), P. 1679–1686.

47. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows-database on thermodynamic properties and related software. Calphad, 1999, 23(2), P. 173–180.

48. Stull D.R. JANAF Thermochemical Tables. Clearinghouse, 1965, 1.

49. Roine A. HSC-software Ver. 3.0 for thermodynamic calculations. Proceedings of the international symposium on computer software in chemical and extractive metallurgy, 1989, P. 15–29.

50. Ranade M.R., Navrotsky A., Zhang. H.Z., Banfield J.F., Elder S.H., Zaban A., Borse P.H., Kulkarni S.K., Doran G.S., Whitfield H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci., 2002, 99, P. 6476–6481.

51. Ryzhenko B.N., Kovalenko N.I., Prisyagina N.I. Titanium complexation in hydrothermal systems. Geochemistry International, 2006, 44(9), P. 879– 895.

52. Knauss K.G., Dibley M.J., Bourcier W.L., Shaw H.F. Ti (IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 C. Applied Geochemistry, 2001, 16(9-10), P. 1115–1128.

53. Schmidt J., Vogelsberger W. Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of solution chemistry, 2009, 38(10), P. 1267–1282.

54. Li Y., Ishigaki T. Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. Journal of Crystal Growth, 2002, 242(3-4), P. 511– 516.

55. Molea A., Popescu V., Rowson N.A., Dinescu A.M. Influence of pH on the formulation of TiO2 nano-crystalline powders with high photocatalytic activity. Powder Technology, 2014, 253, P. 22–28.

56. Razak K.A., Halin D.C., Abdullah M.M.A., Salleh M.M., Mahmed N., Azani A., Chobpattana V. Factors of controlling the formation of titanium dioxide (TiO2) synthesized using sol-gel method–A short review. Journal of Physics: Conference Series. IOP Publishing, 2022, 2169(1), P. 012018.

57. Mehranpour H., Askari M., Ghamsari M. Nucleation and growth of TiO2 nanoparticles. Nanomaterials, 2011, 22, P. 3–26.

58. Gribb A.A., Banfield J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 1997, 82(7-8), P. 717–728.

59. Levchenko A.A., Li G., Boerio-Goates J., Woodfield B.F., Navrotsky A. TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chemistry of Materials, 2006, 18(26), P. 6324–6332.

60. Oliver P.M., Watson G.W., Kelsey E.T., Parker S.C. Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. Journal of Materials Chemistry, 1997, 7(3), P. 563–568.

61. Gong X.Q., Selloni A. First-principles study of the structures and energetics of stoichiometric brookite TiO2 surfaces. Physical Review B— Condensed Matter and Materials Physics, 2007, 76(23), P. 235307.

62. Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(4), P. 428–437.

63. Davies C.W. The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. Journal of the Chemical Society, 1938, P. 2093–2098.

64. Helgeson H.C., Kirkham D.H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, 1974, 274(10), P. 1199–1261.

65. Che X., Li L., Zheng J., Li G., Shi Q. Heat capacity and thermodynamic functions of brookite TiO2. The Journal of Chemical Thermodynamics, 2016, 93, P. 45–51.

66. Shkol’Nikov E.V. Thermodynamics of the dissolution of amorphous and polymorphic TiO2 modifications in acid and alkaline media. Russian Journal of Physical Chemistry A, 2016, 90(3), P. 567–571.

67. Cromer D.T., Herrington K. The structures of anatase and rutile. Journal of the American Chemical Society, 1955, 77(18), P. 4708–4709.

68. Manzoli M., Freyria F.S., Blangetti N., Bonelli B. Brookite, a sometimes under evaluated TiO2 polymorph. RSC Advances, 2022, 12(6), P. 3322– 3334.


Review

For citations:


Elovikov D.P., Almjasheva O.V., Gusarov V.V. Thermodynamic analysis of nanocrystal formation in the TiO2–H2O (NaOH, HCl) system. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):802-811. https://doi.org/10.17586/2220-8054-2025-16-6-802-811

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)