Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Physico-mechanical properties and radiation tolerance of magnesium-indium ferrite synthesized by the polymer-nitrate method

https://doi.org/10.17586/2220-8054-2025-16-6-829-836

Abstract

The paper discusses the features of polymer-nitrate synthesis of fine MgFeInO4 particles and presents experimental study results of the physico-mechanical properties of ceramics produced on their basis. According to powder XRD data, a single-phase ferrite-spinel powder can be obtained only as a result of hightemperature treatment of an X-ray amorphous precursor prepared by thermal decomposition of a mixture of polyvinyl alcohol and metal nitrates. Ceramics produced using submicron MgFeInO4 particles have a density close to the theoretical one. The results of microhardness measurements using the Vickers method showed that the resulting material has high hardness. The band gap energy of MgFeInO4 was determined from the DRS data. Based on the crystallographic and electrophysical characteristics of the synthesized material, its resistance to radiation-induced structural changes was predicted.

About the Authors

O. N. Kondrat'eva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Olga N. Kondrat’eva

Leninskii prosp., 31, Moscow, 119991



M. N. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Maria N. Smirnova

Leninskii prosp., 31, Moscow, 119991



G. E. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Galina E. Nikiforova

Leninskii prosp., 31, Moscow, 119991



A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexey D. Yapryntsev

Leninskii prosp., 31, Moscow, 119991



M. S. Dranik
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Russian Federation

Maria S. Dranik

Leninskii prosp., 31.4, Moscow, 119071



V. A. Ketsko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Valery A. Ketsko

Leninskii prosp., 31, Moscow, 119991



References

1. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, 12 (16), 2638.

2. Kalita P., Parveen R., Ghosh S., Grover V., Mishra Y.K., Avasthi D.K. Progress in radiation tolerant materials: current insights from the perspective of grain size and environmental temperature. J. of Alloys and Compounds, 2025, 1012, 178330.

3. More C.V., Akman F., Dilsiz K., Ogul H., Pawar P.P. Estimation of neutron and gamma-ray attenuation characteristics of some ferrites: Geant4, FLUKA and WinXCom studies. Applied Radiation and Isotopes, 2023, 197, 110803.

4. Li Z., Chan S.-K., Garner F.A., Brandt R.C. Elastic stability of high dose neutron irradiated spinel. J. of Nuclear Materials, 1995, 219, P. 139–142.

5. Wang L., Gong W., Wang S., Ewing R.C. Comparison of ion-beam irradiation effects in X2YO4 compounds. J. of the American Ceramic Society, 1999, 82 (12), P. 3321–3329.

6. Pellerin N., Dodane-Thiriet C., Montouillout V., Beauvy M., Massiot D. Cation sublattice disorder induced by swift heavy ions in MgAl2O4 and ZnAl2O4 spinels: 27Al Solid-State NMR Study. The Journal of Physical Chemistry B, 2007, 111 (44), P. 12707–12714.

7. Wiss T., Matzke Hj. Heavy ion induced damage in MgAl2O4, an inert matrix candidate for the transmutation of minor actinides. Radiation Measurements, 1999, 31 (1-6), P. 507–514.

8. Yasuda K., Matsumura S. Radiation damage effects in insulators for fusion reactors: microstructure evolution in MgO-Al2O3 system oxide crystals. Advances in Science and Technology, 2006, 45, P. 1961–1968.

9. Burghartz M., Matzke Hj., Leger C., Vambenepe G., Rome M. Inert matrices for the transmutation of actinides: fabrication, thermal properties and ´ radiation stability of ceramic materials. J. of Alloys and Compounds, 1998, 271–273, P. 544–548.

10. Neeft E.A.C., Bakker K., Schram R.P.C., Conrad R., Konings R.J.M. The EFTTRA-T3 irradiation experiment on inert matrix fuels. J. of Nuclear Materials, 2003, 320 (1–2), P. 106–116.

11. Kinoshita C., Fukumoto K., Fukuda K., Garner F.A., Hollenberg G.W. Why is magnesia spinel a radiation-resistant material? J. of Nuclear Materials, 1995, 219, P. 143–451.

12. Pascard H., Studer F. Review of irradiation effects on ferrites: results in the world from 1970 to 1995. Journal de Physique IV, 1997, 7 (C1), P. 211–214.

13. Houpert C., Hervieu M., Groult D., Studer F., Toulemonde M. HREM investigation of GeV heavy ion latent tracks in ferrites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988, 32 (1–4), P. 393–396.

14. Meillon S., Dunstetter F., Pascard H., Rodriguez-Carvajal J. Fast neutron irradiated magnetite and haematite investigated by neutron diffraction. Journal de Physique IV Proceedings, 1997, 07 (C1), P. 607–608.

15. Sickafus K.E., Yu N., Nastasi M. Radiation resistance of the oxide spinel: the role of stoichiometry on damage response. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 116 (1–4), P. 85–91.

16. Reznitskiy L.A. Calorimetry of Solids. Moscow: Mos. Gos. Univ., 1981, 184 p.

17. Sepel ˇ ak V., Becker K.D. Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk ´ materials. Materials Science and Engineering: A, 2004, 375–377, P. 861–864.

18. Kingery W.D. Introduction to ceramics, 2nd Edition. John Wiley & Sons, 1976, 1056 p.

19. Shen T.D. Radiation tolerance in a nanostructure: Is smaller better? Nuclear Instruments and Methods in Physics Research B, 2008, 266 (6), P. 921–925.

20. Andrievskii R.A. Radiation stability of nanomaterials. Nanotechnologies in Russia, 2011, 6, P. 357–369.

21. Lokhande R.M., Vinayak V., Mukhamale S.V., Khirade P.P. Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Advances, 2021, 11 (14), P. 7925–7937.

22. Satalkar M., Kane S.N., Kulriya P.K., Avasthi D.K. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 379, P. 235–241.

23. Sharma S.K., Kumar R., Siva Kumar V.V., Knobel M., Reddy V.R., Gupta A., Singh. M. Role of electronic energy loss on the magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 248 (1), P. 37–41.

24. Parvatheeswara Rao B., Rao K.H., Subba Rao P.S.V., Mahesh Kumar A., Murthy Y.L.N., Asokan K., Siva Kumar V.V., Kumar R., Gajbhiye N.S., Caltun O.F. Swift heavy ions irradiation studies on some ferrite nanoparticles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 244 (1), P. 27–30.

25. Hassan H.E., Sharshar T., Hessien M.M., Hemeda O.M. Effect of γ-rays irradiation on Mn–Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 304, P. 72–79.

26. Jagadeesha Angadi V., Anupama A.V., Choudhary H.K., Kumar R., Somashekarappa H.M., Mallappa M., Rudraswamy B., Sahoo B. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. J. of Solid State Chemistry, 2017, 246, P. 119–124.

27. Chikhale R.N., Shinde V.S., Bhatia P.G. Investigate structural, morphological, electrical, dielectric and magnetic properties of dysprosium doped cobalt-nickel ferrites and their response to gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2024, 550, 165320.

28. Manjunatha, Biradar S., Bennal A.S., Patil S., Sayyed M.I., Patil Y.N., Megalamani M.B., Hegde B.G. Experimental investigation on the role of Bi3+ composition in structural, elastic, and radiation shielding properties of multifunctional cobalt-nickel nanoferrites. J. of Alloys and Compounds, 2025, 1033, 181255.

29. Kirichok P.P., Antoshchuk, Mossbauer investigations into magnesium ferrite doped with indium and scandium ions. ¨ Soviet Physics Journal, 1977, 20, P. 627–630.

30. Kimizuka N., Mohri T. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000◦C. J. of Solid State Chemistry. 1985, 60, P. 382–384.

31. Matvejeff M., Linden J., Karppinen M., Yamauchi H. Studies on InFeMO ´ 4 (M = Mg, Co, Ni, Cu and Zn) compounds: crystal structure and cation distribution. Journal of Solid State Chemistry, 2007, 180 (8), P. 2316–2322.

32. Naik M.Z., Salker A.V. Tailoring the super-paramagnetic nature of MgFe2O4 nanoparticles by In3+ incorporation. Materials Science and Engineering B, 2016, 211, P. 37–44.

33. Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics, 2012, 10 (1), P. 181–188.

34. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G., Khort A.A., Roslyakov S.I., Trusov G.V., Moskovskikh D.O. Effect of the residual water content in gels on solution combustion synthesis temperature. Journal of Sol-Gel Science and Technology, 2020, 93, P. 251–261.

35. Kondrateva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Kondakov D.F., Yagudin L.D. Ceramic materials prepared from nanocrys- ´ talline InFeZnO4 powder: optical and mechanical properties, and evaluation of radiation tolerance. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (5), P. 693–701.

36. Smirnova M.N., Kondrat’eva O.N., Nikiforova G.E., Yapryntsev A.D., Averin A.A., Khoroshilov A.V. Features of synthesis of InGaMgO4 from nitrate-organic precursors and study of its physical properties. Russian J. of Inorganic Chemistry, 2024, 69, P. 1119–1126.

37. Smirnova M.N., Nikiforova G.E., Kondrat’eva O.N. Synthesis of magnesium ferrite by combustion of glycine-nitrate gel: the influence of reagents on the gel-precursor and the microstructure of nanopowders, Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (2), P. 224–232.

38. Koferstein R., Walther T., Hesse D., Ebbinghaus S.G. Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel ¨ process and corresponding ceramics. J. of Materials Science, 2013, 48, P. 6509–6518.

39. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E., Khoroshilov A.V., Arkhipenko A.A., Gurevich V.M. Magnesium indate: synthesis and thermodynamic properties. Russian J. of Inorganic Chemistry, 2022, 67, P. 1221–1227.

40. Jayachandran M., Dali S.E., Chockalingam M.J. Synthesis and characterisation of semiconductor oxide MgIn2O4 powder. Bulletin of Electrochemistry, 1998, 14 (8–9), P. 283–285.

41. Pokrovskii B.I., Gapeev A.K., Goryaga A.N., Komissarova L.N. Crystal chemistry and magnetism of mixed gallium- and indium-containing ferrites with spinel structure. Ferrimagnetism. Moscow: Mos. Gos. Univ., 1975, P. 137–146.

42. Navrotsky A., Kleppa O.J. Thermodynamics of formation of simple spinels. J. of Inorganic and Nuclear Chemistry, 1968, 30 (2), P. 479–498.

43. Lebedeva S.I. Determination of Microhardness of Minerals. Moscow: Publishing house of the USSR Academy of Sciences, 1963, 124 p.

44. Khrushchev M.M. Friction, Wear and Microhardness of Materials: Selected Works. Moscow: KRASAND, 2012, 512 p.

45. Anagha A., Joshua A., Chacko B., Babu T.A., Srigiri S., Madhuri W. Structural, optical and magnetic properties of MgFe2O4 and Ni0.5Zn0.5Fe2O4. Materials Chemistry and Physics, 2024, 313, 128746.

46. Sirimanne P.M., Sonoyama N., Sakata T. Semiconductor sensitization by microcrystals of MgIn2S4 on wide bandgap MgIn2O4. Journal of Solid State Chemistry, 2000, 154 (2), P. 476–482.

47. Ueda N., Hosono H., Kawazoe H. Noble transparent semiconductor: MgIn2O4. Solid State Phenomena, 1996, 51–52, P. 317–322.

48. Pearton S.J., Yang J., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga2O3 materials, processing, and devices. Applied Physics Review, 2018, 5 (1), 011301.

49. Geng H., Zhou Q., Zheng J., Gu H. Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high performance Li-ion battery. RSC Advances, 2014, 4 (13), P. 6430–6434.

50. da Silva M.P., do Souza A.C.A., Ferreira A.R.D., do Nascimento P.L.A., Fraga T.J.M., Cavalcanti J.V.F.L., Ghislandi M.G., da Motta Sobrinho M. ´ A. Synthesis of superparamagnetic Fe3O4–graphene oxide-based material for the photodegradation of clonazepam, Scientific Reports, 2024, 14, 18916.

51. Naguib H.M., Kelly R. Criteria for bombardment-induced structural changes in non-metallic solids. Radiation Effects, 1975, 25 (1), P. 1–12.

52. Batsanov S.S. The concept of electronegativity. Conclusions and prospects. Russian Chemical Reviews, 1968, 37 (5), P. 332–351.


Review

For citations:


Kondrat'eva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Dranik M.S., Ketsko V.A. Physico-mechanical properties and radiation tolerance of magnesium-indium ferrite synthesized by the polymer-nitrate method. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):829-836. https://doi.org/10.17586/2220-8054-2025-16-6-829-836

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)