Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Исследование физико-механических свойств и радиационной стойкости магний-индиевого феррита, синтезированного полимер-нитратным способом

https://doi.org/10.17586/2220-8054-2025-16-6-829-836

Аннотация

В статье обсуждаются особенности полимер-нитратного синтеза высокодисперсных частиц магний-индиевого феррита (MgFeInO4), и приводятся результаты экспериментального исследования физико-механических свойств керамики, изготовленной на их основе. По данным порошковой рентгеновской дифракции установлено, что однофазный порошок феррит-шпинели может быть получен только путем высокотемпературной обработки рентгеноаморфного прекурсора, образовавшегося в результате термического разложения смеси поливинилового спирта и нитратов металлов. Керамика, изготовленная с использованием субмикронных частиц MgFeInO4, имеет плотность, близкую к теоретической. Из результатов измерения микротвердости по методу Виккерса установлено, что полученный материал обладает высокой твердостью. По данным спектроскопии диффузного отражения определено значение энергии ширины запрещенной зоны MgFeInO4. С использованием кристаллографических и электрофизических характеристик синтезированного материала спрогнозирована его устойчивость к радиационно-индуцированным структурным изменениям.

Об авторах

О. Н. Кондратьева
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


М. Н. Смирнова
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Г. Е. Никифорова
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


А. Д. Япрынцев
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


М. С. Драник
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Россия


В. А. Кецко
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Список литературы

1. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, 12 (16), 2638.

2. Kalita P., Parveen R., Ghosh S., Grover V., Mishra Y.K., Avasthi D.K. Progress in radiation tolerant materials: current insights from the perspective of grain size and environmental temperature. J. of Alloys and Compounds, 2025, 1012, 178330.

3. More C.V., Akman F., Dilsiz K., Ogul H., Pawar P.P. Estimation of neutron and gamma-ray attenuation characteristics of some ferrites: Geant4, FLUKA and WinXCom studies. Applied Radiation and Isotopes, 2023, 197, 110803.

4. Li Z., Chan S.-K., Garner F.A., Brandt R.C. Elastic stability of high dose neutron irradiated spinel. J. of Nuclear Materials, 1995, 219, P. 139–142.

5. Wang L., Gong W., Wang S., Ewing R.C. Comparison of ion-beam irradiation effects in X2YO4 compounds. J. of the American Ceramic Society, 1999, 82 (12), P. 3321–3329.

6. Pellerin N., Dodane-Thiriet C., Montouillout V., Beauvy M., Massiot D. Cation sublattice disorder induced by swift heavy ions in MgAl2O4 and ZnAl2O4 spinels: 27Al Solid-State NMR Study. The Journal of Physical Chemistry B, 2007, 111 (44), P. 12707–12714.

7. Wiss T., Matzke Hj. Heavy ion induced damage in MgAl2O4, an inert matrix candidate for the transmutation of minor actinides. Radiation Measurements, 1999, 31 (1-6), P. 507–514.

8. Yasuda K., Matsumura S. Radiation damage effects in insulators for fusion reactors: microstructure evolution in MgO-Al2O3 system oxide crystals. Advances in Science and Technology, 2006, 45, P. 1961–1968.

9. Burghartz M., Matzke Hj., Leger C., Vambenepe G., Rome M. Inert matrices for the transmutation of actinides: fabrication, thermal properties and ´ radiation stability of ceramic materials. J. of Alloys and Compounds, 1998, 271–273, P. 544–548.

10. Neeft E.A.C., Bakker K., Schram R.P.C., Conrad R., Konings R.J.M. The EFTTRA-T3 irradiation experiment on inert matrix fuels. J. of Nuclear Materials, 2003, 320 (1–2), P. 106–116.

11. Kinoshita C., Fukumoto K., Fukuda K., Garner F.A., Hollenberg G.W. Why is magnesia spinel a radiation-resistant material? J. of Nuclear Materials, 1995, 219, P. 143–451.

12. Pascard H., Studer F. Review of irradiation effects on ferrites: results in the world from 1970 to 1995. Journal de Physique IV, 1997, 7 (C1), P. 211–214.

13. Houpert C., Hervieu M., Groult D., Studer F., Toulemonde M. HREM investigation of GeV heavy ion latent tracks in ferrites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988, 32 (1–4), P. 393–396.

14. Meillon S., Dunstetter F., Pascard H., Rodriguez-Carvajal J. Fast neutron irradiated magnetite and haematite investigated by neutron diffraction. Journal de Physique IV Proceedings, 1997, 07 (C1), P. 607–608.

15. Sickafus K.E., Yu N., Nastasi M. Radiation resistance of the oxide spinel: the role of stoichiometry on damage response. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 116 (1–4), P. 85–91.

16. Reznitskiy L.A. Calorimetry of Solids. Moscow: Mos. Gos. Univ., 1981, 184 p.

17. Sepel ˇ ak V., Becker K.D. Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk ´ materials. Materials Science and Engineering: A, 2004, 375–377, P. 861–864.

18. Kingery W.D. Introduction to ceramics, 2nd Edition. John Wiley & Sons, 1976, 1056 p.

19. Shen T.D. Radiation tolerance in a nanostructure: Is smaller better? Nuclear Instruments and Methods in Physics Research B, 2008, 266 (6), P. 921–925.

20. Andrievskii R.A. Radiation stability of nanomaterials. Nanotechnologies in Russia, 2011, 6, P. 357–369.

21. Lokhande R.M., Vinayak V., Mukhamale S.V., Khirade P.P. Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Advances, 2021, 11 (14), P. 7925–7937.

22. Satalkar M., Kane S.N., Kulriya P.K., Avasthi D.K. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 379, P. 235–241.

23. Sharma S.K., Kumar R., Siva Kumar V.V., Knobel M., Reddy V.R., Gupta A., Singh. M. Role of electronic energy loss on the magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 248 (1), P. 37–41.

24. Parvatheeswara Rao B., Rao K.H., Subba Rao P.S.V., Mahesh Kumar A., Murthy Y.L.N., Asokan K., Siva Kumar V.V., Kumar R., Gajbhiye N.S., Caltun O.F. Swift heavy ions irradiation studies on some ferrite nanoparticles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 244 (1), P. 27–30.

25. Hassan H.E., Sharshar T., Hessien M.M., Hemeda O.M. Effect of γ-rays irradiation on Mn–Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 304, P. 72–79.

26. Jagadeesha Angadi V., Anupama A.V., Choudhary H.K., Kumar R., Somashekarappa H.M., Mallappa M., Rudraswamy B., Sahoo B. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics. J. of Solid State Chemistry, 2017, 246, P. 119–124.

27. Chikhale R.N., Shinde V.S., Bhatia P.G. Investigate structural, morphological, electrical, dielectric and magnetic properties of dysprosium doped cobalt-nickel ferrites and their response to gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2024, 550, 165320.

28. Manjunatha, Biradar S., Bennal A.S., Patil S., Sayyed M.I., Patil Y.N., Megalamani M.B., Hegde B.G. Experimental investigation on the role of Bi3+ composition in structural, elastic, and radiation shielding properties of multifunctional cobalt-nickel nanoferrites. J. of Alloys and Compounds, 2025, 1033, 181255.

29. Kirichok P.P., Antoshchuk, Mossbauer investigations into magnesium ferrite doped with indium and scandium ions. ¨ Soviet Physics Journal, 1977, 20, P. 627–630.

30. Kimizuka N., Mohri T. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000◦C. J. of Solid State Chemistry. 1985, 60, P. 382–384.

31. Matvejeff M., Linden J., Karppinen M., Yamauchi H. Studies on InFeMO ´ 4 (M = Mg, Co, Ni, Cu and Zn) compounds: crystal structure and cation distribution. Journal of Solid State Chemistry, 2007, 180 (8), P. 2316–2322.

32. Naik M.Z., Salker A.V. Tailoring the super-paramagnetic nature of MgFe2O4 nanoparticles by In3+ incorporation. Materials Science and Engineering B, 2016, 211, P. 37–44.

33. Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics, 2012, 10 (1), P. 181–188.

34. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G., Khort A.A., Roslyakov S.I., Trusov G.V., Moskovskikh D.O. Effect of the residual water content in gels on solution combustion synthesis temperature. Journal of Sol-Gel Science and Technology, 2020, 93, P. 251–261.

35. Kondrateva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Kondakov D.F., Yagudin L.D. Ceramic materials prepared from nanocrys- ´ talline InFeZnO4 powder: optical and mechanical properties, and evaluation of radiation tolerance. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (5), P. 693–701.

36. Smirnova M.N., Kondrat’eva O.N., Nikiforova G.E., Yapryntsev A.D., Averin A.A., Khoroshilov A.V. Features of synthesis of InGaMgO4 from nitrate-organic precursors and study of its physical properties. Russian J. of Inorganic Chemistry, 2024, 69, P. 1119–1126.

37. Smirnova M.N., Nikiforova G.E., Kondrat’eva O.N. Synthesis of magnesium ferrite by combustion of glycine-nitrate gel: the influence of reagents on the gel-precursor and the microstructure of nanopowders, Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (2), P. 224–232.

38. Koferstein R., Walther T., Hesse D., Ebbinghaus S.G. Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel ¨ process and corresponding ceramics. J. of Materials Science, 2013, 48, P. 6509–6518.

39. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E., Khoroshilov A.V., Arkhipenko A.A., Gurevich V.M. Magnesium indate: synthesis and thermodynamic properties. Russian J. of Inorganic Chemistry, 2022, 67, P. 1221–1227.

40. Jayachandran M., Dali S.E., Chockalingam M.J. Synthesis and characterisation of semiconductor oxide MgIn2O4 powder. Bulletin of Electrochemistry, 1998, 14 (8–9), P. 283–285.

41. Pokrovskii B.I., Gapeev A.K., Goryaga A.N., Komissarova L.N. Crystal chemistry and magnetism of mixed gallium- and indium-containing ferrites with spinel structure. Ferrimagnetism. Moscow: Mos. Gos. Univ., 1975, P. 137–146.

42. Navrotsky A., Kleppa O.J. Thermodynamics of formation of simple spinels. J. of Inorganic and Nuclear Chemistry, 1968, 30 (2), P. 479–498.

43. Lebedeva S.I. Determination of Microhardness of Minerals. Moscow: Publishing house of the USSR Academy of Sciences, 1963, 124 p.

44. Khrushchev M.M. Friction, Wear and Microhardness of Materials: Selected Works. Moscow: KRASAND, 2012, 512 p.

45. Anagha A., Joshua A., Chacko B., Babu T.A., Srigiri S., Madhuri W. Structural, optical and magnetic properties of MgFe2O4 and Ni0.5Zn0.5Fe2O4. Materials Chemistry and Physics, 2024, 313, 128746.

46. Sirimanne P.M., Sonoyama N., Sakata T. Semiconductor sensitization by microcrystals of MgIn2S4 on wide bandgap MgIn2O4. Journal of Solid State Chemistry, 2000, 154 (2), P. 476–482.

47. Ueda N., Hosono H., Kawazoe H. Noble transparent semiconductor: MgIn2O4. Solid State Phenomena, 1996, 51–52, P. 317–322.

48. Pearton S.J., Yang J., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga2O3 materials, processing, and devices. Applied Physics Review, 2018, 5 (1), 011301.

49. Geng H., Zhou Q., Zheng J., Gu H. Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high performance Li-ion battery. RSC Advances, 2014, 4 (13), P. 6430–6434.

50. da Silva M.P., do Souza A.C.A., Ferreira A.R.D., do Nascimento P.L.A., Fraga T.J.M., Cavalcanti J.V.F.L., Ghislandi M.G., da Motta Sobrinho M. ´ A. Synthesis of superparamagnetic Fe3O4–graphene oxide-based material for the photodegradation of clonazepam, Scientific Reports, 2024, 14, 18916.

51. Naguib H.M., Kelly R. Criteria for bombardment-induced structural changes in non-metallic solids. Radiation Effects, 1975, 25 (1), P. 1–12.

52. Batsanov S.S. The concept of electronegativity. Conclusions and prospects. Russian Chemical Reviews, 1968, 37 (5), P. 332–351.


Рецензия

Для цитирования:


Кондратьева О.Н., Смирнова М.Н., Никифорова Г.Е., Япрынцев А.Д., Драник М.С., Кецко В.А. Исследование физико-механических свойств и радиационной стойкости магний-индиевого феррита, синтезированного полимер-нитратным способом. Наносистемы: физика, химия, математика. 2025;16(6):829-836. https://doi.org/10.17586/2220-8054-2025-16-6-829-836

For citation:


Kondrat'eva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Dranik M.S., Ketsko V.A. Physico-mechanical properties and radiation tolerance of magnesium-indium ferrite synthesized by the polymer-nitrate method. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):829-836. https://doi.org/10.17586/2220-8054-2025-16-6-829-836

Просмотров: 57

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)