Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1−xYxO2−0.5x nanoparticles
https://doi.org/10.17586/2220-8054-2025-16-6-850-864
Abstract
Zr1−xYxO2−0.5x nanoparticles were introduced into the sulfonic acid form of the Nafion-type perfluorinated copolymer prior to membrane formation to improve its water retention, thermal stability, and proton conductivity. Since the conditions under which nanoparticles are formed can significantly influence their size, phase composition, morphology, and surface chemistry, various approaches to filler synthesis were considered in this study. It was found that among the wet-chemical methods used to produce zirconia-based nanoparticles, solvothermal synthesis offers the most promise in terms of increasing the surface proton conductivity of composite membranes. This method ensures small size, large specific surface area, and high hydrophilicity of the nanoparticles. Consequently, their incorporation into a Nafion-type perfluorinated copolymer increases the membrane’s moisture retention and improves to its proton-conducting properties. In the case of Zr1−xYxO2−0.5x nanoparticles formed under solution combustion conditions, their more hydrophobic surface did not contribute to an increase in the moisture content of the perfluorinated copolymer, but did allow its maximum operating temperature to be increased by 20 ◦C.
Keywords
About the Authors
A. N. BugrovRussian Federation
Alexander Nikolaevich Bugrov- Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov; Department of Physical Chemistry
St. Petersburg, 199004
G. N. Gubanova
Russian Federation
Galina Nikolaevna Gubanova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
O. N. Primachenko
Russian Federation
Oleg Nikolaevich Primachenko – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
I. V. Gofman
Russian Federation
Iosif Vladimirovich Gofman – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
E. M. Ivan’kova
Russian Federation
Elena Mikhailovna Ivan’kova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
E. N. Popova
Russian Federation
Elena Nikolaevna Popova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
D. A. Kirilenko
Russian Federation
Demid Aleksandrovich Kirilenko
St. Petersburg, 194021
V. K. Lavrentyev
Russian Federation
Victor Konstantinovich Lavrentyev – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
E. N. Vlasova
Russian Federation
Elena Nikolaevna Vlasova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
S. V. Kononova
Russian Federation
Svetlana Viktorovna Kononova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov
St. Petersburg, 199004
References
1. Ketpang K., Son B., Lee D., Shanmugam S. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions. J. of Membrane Science, 2015, 488, P. 154–165.
2. Mandanipour V., Bemani M., Parsatabar Z. Recent advances in Nafion-based composite membranes for fuel cells: Enhancing performance and durability. J. Chem. Rev., 2026, 8 (1), P. 40–85.
3. O’Dea J.R., Economou N.J., Buratto S.K. Surface morphology of Nafion at hydrated and dehydrated conditions. Macromolecules, 2013, 46 (6), P. 2267–2274.
4. Zakil F.A., Kamarudin S.K., Basri S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renewable and Sustainable Energy Reviews, 2016, 65, P. 841–852.
5. Primachenko O.N., Marinenko E.A., Odinokov A.S., Kononova S.V., Kulvelis Y.V., Lebedev V.T. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies, 2020, 32 (4), P. 1386–1408.
6. Okonkwo P.C., Belgacem I.B., Emori W., Uzoma P.C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International J. of Hydrogen Energy, 2021, 46 (55), P. 27956–27973.
7. Sigwadi R., Dhlamini M., Mokrani T., Nemavhola F. Wettability and mechanical strength of modified Nafion nanocomposite membrane for fuel cell. Digest J. of Nanomaterials and Biostructures, 2017, 12 (4), P. 1137–1148
8. Karimi M.B., Mohammadi F., Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. International J. of Hydrogen Energy, 2019, 44 (54), P. 28919–28938.
9. Kraytsberg A., Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy and Fuels, 2014, 28 (12), P. 7303–7330.
10. Rodriguez J., Rojas N., Sanchez-Molina M., Gonzalez Rodriguez L., Campana R., Rodriguez L. Hybrid membranes based in Nafion-metallic oxides: performance evaluations. Chemical Engineering Transactions, 2016, 47, P. 415–420.
11. Kim Y., Ketpang K., Jaritphun S., Park J.S., Shanmugam S. A polyoxometalate coupled graphene oxide – Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A, 2015, 3, P. 8148–8155.
12. Mohanraj V., Kim A.R., Shanmugam R., Yu Y., Yoo D.J. Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: The impact of filler on power density, chemical durability and hydrogen permeability of membrane. Composites Part B Engineering, 2021, 215 (21), 108828.
13. Liu S., Yu J., Hao Y., Gao F., Zhou M., Zhao L. Impact of SiO2 modification on the performance of Nafion composite membrane. Int. J. of Polymer Science, 2024, 2024 (1), Article ID 6309923, 10 p.
14. Shao Z.-G., Xu H., Li M., Hsing I-M. Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics, 2006, 177 (7), P. 779–785.
15. Oh K., Kwon O., Son B., Lee D.H., Shanmugam S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. of Membrane Science, 2019, 583, P. 103–109.
16. Navarra M.A., Abbati C., Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J. of Power Sources, 2008, 183 (1), P. 109–113.
17. Ng W.W., Thiam H.S., Pang Y.L., Chong K.C., Lai S.O. A state-of-art on the development of Nafion-based membrane for performance improvement in direct methanol fuel cells. Membranes, 2022, 12 (5), 506.
18. Ye G., Hayden C.A., Goward G.R. Proton dynamics of Nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules, 2007, 40 (5), P. 1529–1537.
19. Sacca A., Carbone A., Passalacqua E., D’Epifanio A., Licoccia S., Traversa E., Sala E., Traini F., Ornelas R. Nafion–TiO ` 2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J. of Power Sources, 2005, 152, P. 16–21.
20. Jian-hua T., Peng-fei G., Zhi-yuan Z., Wen-hui L., Zhong-qiang S. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International J. of Hydrogen Energy, 2008, 33 (20), P. 5686–5690.
21. Yurova P.A., Malakhova V.R., Gerasimova E.V., Stenina I.A., Yaroslavtsev A.B. Nafion/surface modified ceria hybrid membranes for fuel cell application. Polymers, 2021, 13 (15), 2513.
22. Voropaeva D., Merkel A., Yaroslavtsev A. Nafion/ZrO2 hybrid membranes solvated by organic carbonates. Transport and mechanical properties. Solid State Ionics, 2022, 386, 116055.
23. Gubanova G.N., Primachenko O.N., Bugrov A.N., Vylegzhanina M.E., Gofman I.V., Lavrentiev V.K., Ivankova E.N., Vlasova E.N., Kononova S.V. Structural and morphological features of perfluorosulfonic acid membranes doped with zirconium dioxide nanoparticles. J. of Surface Investigation X-ray Synchrotron and Neutron Techniques, 2024, 17 (S1), P. S391–S403.
24. Devrim Y., Albostan A. Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. Int. J. of Hydrogen Energy, 2015, 40 (44), P. 15328–15335.
25. Asghar M.R., Zhang W., Su H., Zhang J., Liu H., Xing L., Yan X., Xu Q. A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells. Energy Adv., 2025, 4, P. 185–223.
26. Yaroslavtsev A.B., Stenina I.A. Current progress in membranes for fuel cells and reverse electrodialysis. Mendeleev Commun., 2021, 31 (4), P. 423–432.
27. Sacca A., Carbone A., Gatto I., Pedicini R., Freni A., Patti A., Passalacqua E. Composites Nafion-titania membranes for polymer electrolyte fuel ` cell (PEFC) applications at low relative humidity levels: Chemical physical properties and electrochemical performance. Polymer Testing, 2016, 56 (2), P. 10–18.
28. Zhu L.-Y., Li Y.-C., Liu J., He J., Wang L.-Y., Lei J.-D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Petroleum Science, 2022, 19, P. 1371–1381.
29. Sigwadi R., Mokrani T. Zirconia based/Nafion nanocomposite membranes for fuel cell applications. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11–13, 2014 Paper No. 151.
30. Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (5), P. 697–703.
31. Yamamoto O., Arachi Y., Sakai H., Takeda Y., Imanishi N., Mizutani Y., Kawai M., Nakamura Y. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, 4 (5–6), P. 403–408.
32. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P., Khamova T.V., Kirilenko D.A., Kolesnikov I.E., Pankin D.V., Baigildin V.A., Licitra C. Influence of stabilizing ion content on the structure, photoluminescence and biological properties of Zr1−xEuxO2−0.5x nanoparticles. Crystals, 2020, 10, 1038.
33. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), P. 810–815.
34. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 164– 175.
35. Primachenko O.N., Odinokov A.S., Marinenko E.A., Kulvelis Yu.V., Barabanov V.G., Kononova S.V. Influence of sulfonyl fluoride monomers on the mechanism of emulsion copolymerization with the preparation of proton-conducting membrane precursors. J. of Fluorine Chemistry, 2021, 244 (4), 109736.
36. Lutterotti L., Matthies S., Wenk H., Schultz A.S., Richardson J.W. Combined texture and structure analysis of deformed limestone from time-offlight neutron diffraction spectra. J. Appl. Phys., 1997, 81, P. 594–600.
37. Kirilenko D.A., Dideykin A., Aleksenskiy A., Sitnikova A., Konnikov S., Vul’ A. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron, 2015, 68, P. 23–26.
38. Igawa N., Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc., 2001, 84 (5), P. 1169–1171.
39. Martin U., Boysen H., Frey F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B, 1993, 49 (3), P. 403–413.
40. Tailor S., Singh M., Doub A.V. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J. of Cluster Science, 2016, 27 (4), P. 1097–1107.
41. Shuklina A.I., Smirnov A.V., Fedorov B.A., Kirillova S.A., Almjasheva O.V. Structure of nanoparticles in the ZrO2-Y2O3 system, as obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (6), P. 729–738.
Review
For citations:
Bugrov A.N., Gubanova G.N., Primachenko O.N., Gofman I.V., Ivan’kova E.M., Popova E.N., Kirilenko D.A., Lavrentyev V.K., Vlasova E.N., Kononova S.V. Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1−xYxO2−0.5x nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):850-864. https://doi.org/10.17586/2220-8054-2025-16-6-850-864
