Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1−xYxO2−0.5x nanoparticles

https://doi.org/10.17586/2220-8054-2025-16-6-850-864

Abstract

Zr1−xYxO2−0.5x nanoparticles were introduced into the sulfonic acid form of the Nafion-type perfluorinated copolymer prior to membrane formation to improve its water retention, thermal stability, and proton conductivity. Since the conditions under which nanoparticles are formed can significantly influence their size, phase composition, morphology, and surface chemistry, various approaches to filler synthesis were considered in this study. It was found that among the wet-chemical methods used to produce zirconia-based nanoparticles, solvothermal synthesis offers the most promise in terms of increasing the surface proton conductivity of composite membranes. This method ensures small size, large specific surface area, and high hydrophilicity of the nanoparticles. Consequently, their incorporation into a Nafion-type perfluorinated copolymer increases the membrane’s moisture retention and improves to its proton-conducting properties. In the case of Zr1−xYxO2−0.5x nanoparticles formed under solution combustion conditions, their more hydrophobic surface did not contribute to an increase in the moisture content of the perfluorinated copolymer, but did allow its maximum operating temperature to be increased by 20 ◦C.

About the Authors

A. N. Bugrov
NRC “Kurchatov Institute” – PNPI – IMC; Saint Petersburg Electrotechnical University (ETU “LETI”)
Russian Federation

Alexander Nikolaevich Bugrov- Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov; Department of Physical Chemistry

St. Petersburg, 199004



G. N. Gubanova
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Galina Nikolaevna Gubanova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



O. N. Primachenko
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Oleg Nikolaevich Primachenko – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



I. V. Gofman
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Iosif Vladimirovich Gofman – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



E. M. Ivan’kova
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Elena Mikhailovna Ivan’kova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



E. N. Popova
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Elena Nikolaevna Popova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



D. A. Kirilenko
Ioffe Institute
Russian Federation

Demid Aleksandrovich Kirilenko

St. Petersburg, 194021



V. K. Lavrentyev
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Victor Konstantinovich Lavrentyev – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



E. N. Vlasova
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Elena Nikolaevna Vlasova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



S. V. Kononova
NRC “Kurchatov Institute” – PNPI – IMC
Russian Federation

Svetlana Viktorovna Kononova – Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov

St. Petersburg, 199004



References

1. Ketpang K., Son B., Lee D., Shanmugam S. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions. J. of Membrane Science, 2015, 488, P. 154–165.

2. Mandanipour V., Bemani M., Parsatabar Z. Recent advances in Nafion-based composite membranes for fuel cells: Enhancing performance and durability. J. Chem. Rev., 2026, 8 (1), P. 40–85.

3. O’Dea J.R., Economou N.J., Buratto S.K. Surface morphology of Nafion at hydrated and dehydrated conditions. Macromolecules, 2013, 46 (6), P. 2267–2274.

4. Zakil F.A., Kamarudin S.K., Basri S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renewable and Sustainable Energy Reviews, 2016, 65, P. 841–852.

5. Primachenko O.N., Marinenko E.A., Odinokov A.S., Kononova S.V., Kulvelis Y.V., Lebedev V.T. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: A review. Polymers for Advanced Technologies, 2020, 32 (4), P. 1386–1408.

6. Okonkwo P.C., Belgacem I.B., Emori W., Uzoma P.C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. International J. of Hydrogen Energy, 2021, 46 (55), P. 27956–27973.

7. Sigwadi R., Dhlamini M., Mokrani T., Nemavhola F. Wettability and mechanical strength of modified Nafion nanocomposite membrane for fuel cell. Digest J. of Nanomaterials and Biostructures, 2017, 12 (4), P. 1137–1148

8. Karimi M.B., Mohammadi F., Hooshyari K. Recent approaches to improve Nafion performance for fuel cell applications: A review. International J. of Hydrogen Energy, 2019, 44 (54), P. 28919–28938.

9. Kraytsberg A., Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy and Fuels, 2014, 28 (12), P. 7303–7330.

10. Rodriguez J., Rojas N., Sanchez-Molina M., Gonzalez Rodriguez L., Campana R., Rodriguez L. Hybrid membranes based in Nafion-metallic oxides: performance evaluations. Chemical Engineering Transactions, 2016, 47, P. 415–420.

11. Kim Y., Ketpang K., Jaritphun S., Park J.S., Shanmugam S. A polyoxometalate coupled graphene oxide – Nafion composite membrane for fuel cells operating at low relative humidity. J. Mater. Chem. A, 2015, 3, P. 8148–8155.

12. Mohanraj V., Kim A.R., Shanmugam R., Yu Y., Yoo D.J. Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: The impact of filler on power density, chemical durability and hydrogen permeability of membrane. Composites Part B Engineering, 2021, 215 (21), 108828.

13. Liu S., Yu J., Hao Y., Gao F., Zhou M., Zhao L. Impact of SiO2 modification on the performance of Nafion composite membrane. Int. J. of Polymer Science, 2024, 2024 (1), Article ID 6309923, 10 p.

14. Shao Z.-G., Xu H., Li M., Hsing I-M. Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics, 2006, 177 (7), P. 779–785.

15. Oh K., Kwon O., Son B., Lee D.H., Shanmugam S. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J. of Membrane Science, 2019, 583, P. 103–109.

16. Navarra M.A., Abbati C., Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J. of Power Sources, 2008, 183 (1), P. 109–113.

17. Ng W.W., Thiam H.S., Pang Y.L., Chong K.C., Lai S.O. A state-of-art on the development of Nafion-based membrane for performance improvement in direct methanol fuel cells. Membranes, 2022, 12 (5), 506.

18. Ye G., Hayden C.A., Goward G.R. Proton dynamics of Nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules, 2007, 40 (5), P. 1529–1537.

19. Sacca A., Carbone A., Passalacqua E., D’Epifanio A., Licoccia S., Traversa E., Sala E., Traini F., Ornelas R. Nafion–TiO ` 2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J. of Power Sources, 2005, 152, P. 16–21.

20. Jian-hua T., Peng-fei G., Zhi-yuan Z., Wen-hui L., Zhong-qiang S. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International J. of Hydrogen Energy, 2008, 33 (20), P. 5686–5690.

21. Yurova P.A., Malakhova V.R., Gerasimova E.V., Stenina I.A., Yaroslavtsev A.B. Nafion/surface modified ceria hybrid membranes for fuel cell application. Polymers, 2021, 13 (15), 2513.

22. Voropaeva D., Merkel A., Yaroslavtsev A. Nafion/ZrO2 hybrid membranes solvated by organic carbonates. Transport and mechanical properties. Solid State Ionics, 2022, 386, 116055.

23. Gubanova G.N., Primachenko O.N., Bugrov A.N., Vylegzhanina M.E., Gofman I.V., Lavrentiev V.K., Ivankova E.N., Vlasova E.N., Kononova S.V. Structural and morphological features of perfluorosulfonic acid membranes doped with zirconium dioxide nanoparticles. J. of Surface Investigation X-ray Synchrotron and Neutron Techniques, 2024, 17 (S1), P. S391–S403.

24. Devrim Y., Albostan A. Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. Int. J. of Hydrogen Energy, 2015, 40 (44), P. 15328–15335.

25. Asghar M.R., Zhang W., Su H., Zhang J., Liu H., Xing L., Yan X., Xu Q. A review of proton exchange membranes modified with inorganic nanomaterials for fuel cells. Energy Adv., 2025, 4, P. 185–223.

26. Yaroslavtsev A.B., Stenina I.A. Current progress in membranes for fuel cells and reverse electrodialysis. Mendeleev Commun., 2021, 31 (4), P. 423–432.

27. Sacca A., Carbone A., Gatto I., Pedicini R., Freni A., Patti A., Passalacqua E. Composites Nafion-titania membranes for polymer electrolyte fuel ` cell (PEFC) applications at low relative humidity levels: Chemical physical properties and electrochemical performance. Polymer Testing, 2016, 56 (2), P. 10–18.

28. Zhu L.-Y., Li Y.-C., Liu J., He J., Wang L.-Y., Lei J.-D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Petroleum Science, 2022, 19, P. 1371–1381.

29. Sigwadi R., Mokrani T. Zirconia based/Nafion nanocomposite membranes for fuel cell applications. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications Prague, Czech Republic, August 11–13, 2014 Paper No. 151.

30. Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (5), P. 697–703.

31. Yamamoto O., Arachi Y., Sakai H., Takeda Y., Imanishi N., Mizutani Y., Kawai M., Nakamura Y. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, 4 (5–6), P. 403–408.

32. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P., Khamova T.V., Kirilenko D.A., Kolesnikov I.E., Pankin D.V., Baigildin V.A., Licitra C. Influence of stabilizing ion content on the structure, photoluminescence and biological properties of Zr1−xEuxO2−0.5x nanoparticles. Crystals, 2020, 10, 1038.

33. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), P. 810–815.

34. Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0.98Eu0.02O1.99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 164– 175.

35. Primachenko O.N., Odinokov A.S., Marinenko E.A., Kulvelis Yu.V., Barabanov V.G., Kononova S.V. Influence of sulfonyl fluoride monomers on the mechanism of emulsion copolymerization with the preparation of proton-conducting membrane precursors. J. of Fluorine Chemistry, 2021, 244 (4), 109736.

36. Lutterotti L., Matthies S., Wenk H., Schultz A.S., Richardson J.W. Combined texture and structure analysis of deformed limestone from time-offlight neutron diffraction spectra. J. Appl. Phys., 1997, 81, P. 594–600.

37. Kirilenko D.A., Dideykin A., Aleksenskiy A., Sitnikova A., Konnikov S., Vul’ A. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Micron, 2015, 68, P. 23–26.

38. Igawa N., Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc., 2001, 84 (5), P. 1169–1171.

39. Martin U., Boysen H., Frey F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B, 1993, 49 (3), P. 403–413.

40. Tailor S., Singh M., Doub A.V. Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J. of Cluster Science, 2016, 27 (4), P. 1097–1107.

41. Shuklina A.I., Smirnov A.V., Fedorov B.A., Kirillova S.A., Almjasheva O.V. Structure of nanoparticles in the ZrO2-Y2O3 system, as obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (6), P. 729–738.


Review

For citations:


Bugrov A.N., Gubanova G.N., Primachenko O.N., Gofman I.V., Ivan’kova E.M., Popova E.N., Kirilenko D.A., Lavrentyev V.K., Vlasova E.N., Kononova S.V. Synthesis, structure and properties of composite proton-conducting membranes based on a Nafion-type perfluorinated copolymer with Zr1−xYxO2−0.5x nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):850-864. https://doi.org/10.17586/2220-8054-2025-16-6-850-864

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)