Microwave-assisted synthesis of M/TiO2/C (M=Ni, Cu, Ni–Cu) photocatalysts for CO2 reduction: structural evolution and photocatalytic properties
https://doi.org/10.17586/2220-8054-2025-16-6-865-871
Abstract
This study presents the synthesis of a TiO2-based composite material with transition metal (Ni, Cu) nanoparticles using microwave radiation. The obtained materials were characterised using X-ray powder diffraction, and the size of the nanoparticles was determined using the Scherrer equation. The photocatalytic activity of the synthesised composites was studied in reaction of CO2 reduction to CO and CH4 under the visible light with a wavelength of 400 nm. Microwave treatment of a mixture of TiO2 with transition metal salts (Ni, Cu) and graphite was founded to decrease a photocatalytic activity in CO2 reduction reaction, while a mechanical mixture of TiO2 and graphite, not subjected to microwave treatment, demonstrated increased catalytic activity compared to unmodified TiO2 Evonik P25. The decrease in catalytic activity of the case of microwave-treated samples is associated with an irreversible phase transition of the photoactive anatase phase into the catalytically inert rutile phase and formation of TiO2−x phases. This process is induced by overheating during microwave synthesis, where graphite (Cg) acts as an effective microwave absorber and a reducing agent for Ti4+ cations in TiO2. The obtained results are interesting for the development of efficient TiO2-based photocatalysts for CO2 reduction.
Keywords
About the Authors
V. S. KashanskyRussian Federation
Vladislav S. Kashansky
420008, Kazan
A. V. Sukhov
Russian Federation
Alexander V. Sukhov
420088, Kazan
A. V. Zhurenok
Russian Federation
Angelina V. Zhurenok
630090, Novosibirsk
D. D. Mishchenko
Russian Federation
Denis D. Mishchenko
630559, Kol’tsovo
O. S. Soficheva
Russian Federation
Olga S. Soficheva
420088, Kazan
E. A. Kozlova
Russian Federation
Ekaterina A. Kozlova
630090, Novosibirsk
O. G. Sinyashin
Russian Federation
Oleg G. Sinyashin
420088, Kazan
D. G. Yakhvarov
Russian Federation
Dmitry G. Yakhvarov
420088, Kazan
References
1. Jeffry L., Ong M.Y., Nomanbhay S., Mofijur M., Mubashir M., Show P.L. Greenhouse gases utilization: A review. Fuel, 2021, 301, 121017.
2. Yoro K.O., Daramola M.O. CO2 emission sources, greenhouse gases, and the global warming effect. Advances in carbon capture. Woodhead Publishing, 2020, P. 3–28.
3. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Y.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Zolotukhina A.V. The green chemistry paradigm in modern organic synthesis. Russ. Chem. Rev., 2023, 92 (12), 5104.
4. Alekseev R.F., Saraev A.A., Kurenkova A.Y., Kozlova E.A. Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction. Russ. Chem. Rev., 2024, 93 (5), 5124.
5. Kozlova E.A., Lyulyukin M.N., Kozlov D.V., Parmon V.N. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. Russ. Chem. Rev., 2021, 90 (12), P. 1520–1543.
6. Jeon J.P., Kweon D.H., Jang B.J., Ju M.J., Baek J.B. Enhancing the photocatalytic activity of TiO2 catalysts. Advanced Sustainable Systems, 2020, 4 (12), P. 1–19.
7. Song H., Tan Y.C., Kim B., Ringe S., Oh J. Tunable product selectivity in electrochemical CO2 reduction on well-mixed Ni–Cu alloys. ACS Applied Materials and Interfaces, 2021, 13 (46), P. 55272–55280.
8. Du Y.R., Li X.Q., Yang X.X., Duan G.Y., Chen Y.M., Xu B.H. Stabilizing high-valence copper(I) sites with Cu–Ni interfaces enhances electroreduction of CO2 to C2+ products. Small, 2024, 20 (42), 2402534.
9. Jun M., Kundu J., Kim D.H., Kim M., Kim D., Lee K., Choi S.I. Strategies to modulate the copper oxidation state toward selective C2+ production in the electrochemical CO2 reduction reaction. Advanced Materials, 2024, 36 (21), 2313028.
10. Qiu J., Zhu H., Chen B., Jing W., Zhou W., Bai Y., Xu L. Scalable development of photocatalysis-mediated aquatic habitat restoration devices based on TiO2/graphene/BiVO4 and the application in black-odorous river treatment. J. of Environmental Chemical Engineering, 2024, 12 (5), 113414.
11. Toby B.H., Von Dreele R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. of Applied Crystallography, 2013, 46 (2), P. 544–549.
12. Pentsak E.O., Gordeev E.G., Ananikov V.P. Noninnocent nature of carbon support in metal/carbon catalysts: Etching/pitting vs nanotube growth under microwave irradiation. ACS Catalysis, 2014, 4 (11), P. 3806–3814.
13. Gouma P.I., Mills M.J. Anatase-to-rutile transformation in titania powders. J. of the American Ceramic Society, 2001, 84 (3), P. 619–622.
14. Shannon R.D., Pask J.A. Kinetics of the anataserutile transformation. J. of the American Ceramic Society, 1965, 48 (8), P. 391–398.
15. Bouzoubaa A., Markovits A., Calatayud M., Minot C. Comparison of the reduction of metal oxide surfaces: TiO2-anatase, TiO2-rutile and SnO2-rutile. Surface Science, 2005, 583 (1), P. 107–117.
16. Zhurenok A.V., Kurenkova A.Y., Zazulya A.E., Vasilchenko D.B., Mishchenko D.D., Lomakina V.A., Gerasimov E.Y., Markovskaya D.V., Kozlova E.A. Heterostructures based on reduced graphene oxide and graphitic carbon nitride for visible light-induced photocatalytic production of H2. Russian Chemical Bulletin, 2025, 74 (3), P. 733–741.
Review
For citations:
Kashansky V.S., Sukhov A.V., Zhurenok A.V., Mishchenko D.D., Soficheva O.S., Kozlova E.A., Sinyashin O.G., Yakhvarov D.G. Microwave-assisted synthesis of M/TiO2/C (M=Ni, Cu, Ni–Cu) photocatalysts for CO2 reduction: structural evolution and photocatalytic properties. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):865-871. https://doi.org/10.17586/2220-8054-2025-16-6-865-871
