Formation of NH4MgF3 and MgF2 nanoparticles from magnesium hydroxycarbonate in ammonium hydrofluoride melt
https://doi.org/10.17586/2220-8054-2025-16-6-897-907
Abstract
Ammonium fluorometalates with the perovskite structure NH4MF3 (M = 3d metals) are used for cathode materials and NH4MgF3 is used for solid electrolytes. There is only fragmentary information in the literature about the production of NH4MgF3 powder without available X-ray diffraction data. The conditions enable the synthesis of single-phase NH4MgF3 powder are proposed by reaction of magnesium hydroxycarbonate with ammonium hydrofluoride melt at a temperature of 220 ◦C. It has been established that the process is two-stage: the first reaction is the formation of the (NH4)2MgF4 compound and the second reaction is the decomposition of (NH4)2MgF4 at a temperature of 220 ◦C to NH4MgF3. Upon decomposition of NH4MgF3, anhydrous MgF2 nanoparticles (28 ± 7 nm) are formed. The proposed method for obtaining single-phase NH4MgF3 opens up opportunities for studying its functional properties.
Keywords
About the Authors
A. A. LugininaRussian Federation
Anna A. Luginina
Vavilova str. 38, Moscow
A. A. Alexandrov
Russian Federation
Alexander A. Alexandrov
Vavilova str. 38, Moscow; Leninskiy Prospekt, 31, Moscow
D. S. Yasyrkina
Russian Federation
Darya S. Yasyrkina
Vavilova str. 38, Moscow
J. A. Ermakova
Russian Federation
Julia A. Ermakova
Vavilova str. 38, Moscow
V. V. Tapero
Russian Federation
Victoria V. Tapero - Department of Materials Science of Semiconductors and Dielectrics
Vavilova str. 38, Moscow; Leninskiy Prospekt, 4, Moscow
S. V. Kuznetsov
Russian Federation
Sergey V. Kuznetsov
Vavilova str. 38, Moscow
References
1. Rakov E.G., Mel’nichenko E.I. The properties and reactions of ammonium fluorides. Russ. Chem. Rev., 1984, 53, P. 851.
2. Rudorff W., Lincke G., Babel D. Untersuchungen an tern ¨ aren Fluoriden. (II). Kobalt(II)- und Kupfer(II)-fluoride. ¨ ZAAC, 1963, 320, P. 150–170.
3. Patil K.S., Secco E.A. Complex fluorides with perovskite structure: thermal analyses, calorimetry, and infrared spectra. Can. J. Chem., 1972, 50, P. 1529–1530.
4. Palacios E., Bartolome J., Navarro R. et al. Heat capacity and N.M.R. study of the NH ´ 4MgF3 perovskite. Ferroelectrics, 1984, 55, P. 287–290.
5. Palacios E., Navarro R. Thermal properties of XMF3: cubic perovskites. I. Heat capacity of NH4MgF3 and NH4CdF3. J. Chem. Thermodynamics, 1986, 18, P. 1089–1101.
6. Navarro R., Burriel R., Bartolome J. et al. Thermal properties of XMF ´ 3 cubic perovskites II. Heat capacity of NH4ZnF3 and KZnF3. J. Chem. Thermodynamics, 1986, 18, P. 1135–1146.
7. Palacios E., Bartolome J., Burriel R. et al. Proton-lattice relaxation in NH ´ 4MF3. J. Phys.: Condens. Matter, 1989, 1, P. 1119–1132.
8. Helmholdt R.B., Wiegers G.A., Bartolome J. Investigation of the structural phase transitions in the ammonium trifluorides of zinc, manganese and cobalt by means of X-ray and neutron diffraction. J. Phys.: Condens. Matter, 1980, 13(27), P. 5081–5088.
9. Bartolome J., Navarro R., Gonz ´ alez D. et al. Magnetic properties of NH ´ 4CoF3. Physica B+C, 1977, 92, P. 45–51.
10. Plitzko C., Strecker M., Meyer G. Crystal structure of two modifications of ammonium trifluoro nickelate(II), NH4NiF3. Z. Kristallogr. New Cryst. Struct., 1997, 212, P. 3–4.
11. Siebeneichler S., Dorn K.V., Smetana V. et al. A soft chemistry approach to the synthesis of single crystalline and highly pure (NH4)CoF3 for optical and magnetic investigations. J. Chem. Phys., 2020, 153, P. 104501-8.
12. Bartolome J., Navarro R., Gonz ´ alez D. et al. Librational and reorientational specific heats of NH ´ + 4 in NH4ZnF3 and NH4CoF3. Physica B+C, 1977, 92, P. 23–44.
13. Bartolome J., Navarro R., Gonz ´ alez D., et al. Hindered rotational specific heat of NH ´ + 4 in the cubic perovskite NH4ZnF3. Chem. Phys. Lett., 1977, 48, P. 536–539.
14. Steenbergen C., de Graaf L.A., Bevaart L. et al. Rotational motions of NH+ 4 groups in NH4ZnF3 studied by quasielastic neutron scattering. J. Chem. Phys., 1979, 70, P. 1450–1455.
15. Rubin J., Bartolome J., Anne M. et al. The dynamics of NH+ 4 in the NH4MF3 perovskites: I. A quasielastic neutron scattering study. J. Phys.: Condens. Matter, 1994, 6, P. 8449–8468.
16. Plaza I., Rubin J., Laguna M.A. et al. Optical spectroscopy of the NH+ 4 - internal vibrations in the orthorhombic phase of NH4MF3 (M is Mn, Zn) perovskites. Spectrochim. Acta, Part A, 1996, 52, P. 57–67.
17. Smith D. The derivation of the rotational potential function from atom-atom potentials. II. Ammonium-fluorine compound. J. Chem. Phys., 1987, 86, P. 4055–4065.
18. Laguna M.A., Sanjuan M.L., Orera V.M. et al. X-ray and Raman study of the low temperature NH4MnF3 structure; evidence of librational motion of the NH+ 4 ion. J. Phys.: Condens. Matter, 1993, 5, P. 283–300.
19. Aleksandrov K.S., Bartolome J., Gorev M.V. et al. Hydrostatic pressure effect on phase transitions in perovskites with ammonium cations. Phys. Status Solidi B, 2000, 217, P. 785–791.
20. Motohashi K., Matsukawa Y., Nakamura T. et al. Fast fluoride ion conduction of NH4(Mg1−xLix)F3−x and (NH4)2(Mg1−xLix)F4−x assisted by molecular cations. Sci Rep., 2022, 12, P. 5955.
21. Martin A., Santiago E.S., Kemnitz E. et al. Reversible insertion in AFeF3 (A = K+, NH+ 4 ) cubic iron fluoride perovskites. ACS Appl. Mater. Interfaces, 2019, 11, P. 33132–33139.
22. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 1976, A32, P. 751–767.
23. Cotton F.A., Wilkinson G., Murillo C.A. et al. Advanced Inorganic Chemistry. Part 2. 6th ed. John Wiley and Sons, New York, 1999, 1355 p.
24. Haendler H.M., Johnson F.A., Crocket D.S. The Synthesis of ammonium fluorometallates in methanol. J. Am. Chem. Soc., 1958, 80, P. 2662.
25. Crocket D.S., Haendler H.M. Synthesis of fluorometallates in methanol. Some structure relationships. J. Am. Chem. Soc., 1960, 82, P. 4158–4162.
26. Crocket D.S., Grossman R.A. The interaction between ammonium fluoride and metal fluorides as compressed powders. Inorg. Chem., 1964, 3, P. 644–646.
27. Charpin P., Roux N., Ehretsmann J. Fluorures doubles de magnesium et d’ammonium. ´ C. R. Acad. Sci. Paris, 1968, 267, P. 484–486.
28. Ikrami D.D., Ol’khovaya L.A., Luginina A.A. et al. Interaction of magnesium oxide with fluoride and ammonium hydrofluoride. Russ. J. Inorg. Chem., 1977, 22(3), P. 660–663.
29. Guggenheim H. Growth of highly perfect fluoride single crystals for optical asers. J. Appl. Phys., 1963, 34, P. 2482–2485.
30. Cotter T.P., Thomas M.E., Tropf W.J. Magnesium Fluoride (MgF2). Handbook of Optical Constants of Solids, 1997, 2, P. 899–918.
31. Dodge M.J. Refractive properties of magnesium fluoride. Appl. Opt., 1984, 23, P. 1980–1985.
32. Kitamura Y., Miyazaki N., Mabuchi T. et al. Birefringence simulation of annealed ingot of magnesium fluoride single crystal. J. Cryst. Growth, 2009, 311, P. 3954–3962.
33. Scott W. Purification, growth of single crystals, and selected properties of MgF2. J. Am. Ceram. Soc., 1962, 45, P. 586–587.
34. Hanson W.F., Arakawa E.T., Williams M.W. Optical properties of MgO and MgF2 in the extreme ultraviolet region. J. Appl. Phys., 1972, 43, P. 1661–1665.
35. Olsen A.L., McBride W.R. Transmittance of single-crystal magnesium fluoride and IRTRAN-1 in the 0.2 to 15-µ range. J. Opt. Soc. Am., 1963, 53, P. 1003–1005.
36. Parsons W.E. Kodak Irtran infrared optical materials. Appl. Opt., 1972, 11, P. 43–48.
37. Buckner D.A., Hafner H.C., Kreidl N.J. Hot-pressing magnesium fluoride. J. Am. Ceram. Soc., 1962, 45, P. 435–438.
38. Chang C.S., Hon M.H., Yang S.J. The optical properties of hot-pressed magnesium fluoride and single-crystal magnesium fluoride in the 0.1 to 9.0 µm range. J. Mater. Sci., 1991, 26, P. 1627–1630.
39. Volynec F.K. Optical properties and applications of optical ceramics. Soviet Journal of Optical Technology, 1973, 10, P. 47–58.
40. Zaidel A.N., Schrader E.D. Vacuum Spectroscopy and Its Application. Nauka, Moscow, 1980, 431 p.
41. Voronkova E.M., Grechushnikov V.M., Distler G.I. et al. Optical Materials for IR Technology. Nauka, Moscow, 1965, 335 p.
42. Zverev V.A., Krivopustova E.V., Tochilina T.V. Optical materials. Part 2. Textbook for Designers of Optical Systems and Devices. ITMO, Saint Petersburg, 2013, 248 p.
43. Kuznetsov S.V., Alexandrov A.A., Fedorov P.P. Optical Fluoride Nanoceramics. Inorganic Materials, 2021, 57(6), P. 555–578.
44. Sun P., Jiang C., Jiang Y. et al. Structural, infrared optical and mechanical properties of the magnesium fluoride films. Infrared Phys. Technol., 2024, 137, P. 105184.
45. Melnichenko E.I. Fluoride Processing of Rare Earth Ores of the Far East. DalNauka, Vladivostok, 2002, 268 p.
46. Kashcheev I.D., Zemlyanoi K.G., Ustyantsev V.M., Voskretsova E.A. Investigation of thermal decomposition of natural and synthetic magnesium compounds. Novye Ogneupory (New Refractories), 2015, 10, P. 28–35. (In Russ.)
47. Oxton I.A., Knop O. Infrared Spectra of the Ammonium Ion in Crystals. I. Ammonium Hexachloroplatinate(IV) and Hexachlorotellurate(IV). Can. J. Chem., 1975, 53, P. 2675–2682.
48. Knop O., Westerhaus W.J. Infrared spectra of the ammonium ion in crystals. Part XIV. Hydrogen bonding and orientation of the ammonium ion in fluorides, with observations on the transition temperatures in cubic cryolite, elpasolite, and perovskite halides. Can. J. Chem., 1985, 63, P. 3328–3353.
49. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Hoboken, New Jersey, 2009, 419 p.
50. Ivanov V.K., Fedorov P.P., Baranchikov A.E., et al. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev., 2014, 83(12), P. 1204–1222.
Review
For citations:
Luginina A.A., Alexandrov A.A., Yasyrkina D.S., Ermakova J.A., Tapero V.V., Kuznetsov S.V. Formation of NH4MgF3 and MgF2 nanoparticles from magnesium hydroxycarbonate in ammonium hydrofluoride melt. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):897-907. https://doi.org/10.17586/2220-8054-2025-16-6-897-907
