Facile synthesis and characterization of FeCoNiPt alloy nanoparticle electrocatalysts with different Pt content
https://doi.org/10.17586/2220-8054-2025-16-6-919-924
Abstract
In this work, we present a facile synthesis of FeCoNiPt alloy nanoparticles (NPs) with tunable platinum content (10–30 at.%). The NPs were produced by medium-assisted solid-state reaction using acetylacetonate metal precursors. The structural characterization (TEM, HRTEM, STEM-EDS, and XRD) reveals that the obtained FeCoNiPt NPs exhibit a uniform morphology with an average diameter of 3–7 nm and crystallize in a single-phase face-centered cubic solid solution. Increasing the Pt content leads to lattice expansion and a systematic increase in crystallite size, consistent with the larger atomic radius of Pt. STEM-EDS elemental maps confirm homogeneous incorporation of Fe, Co, Ni, and Pt across individual nanoparticles, demonstrating the successful formation of a multicomponent alloy. This study demonstrates that tuning Pt content in FeCoNiPt multicomponent alloys enables precise modulation of d-band electronic structure. The proposed synthesis approach is simple, cost-effective, and scalable, offering a promising pathway for designing Pt-optimized electrocatalysts.
About the Authors
O. V. AlexeevaRussian Federation
Olga V. Alexeeva
Moscow
O. K. Karyagina
Russian Federation
Olga K. Karyagina
Moscow
S. S. Kozlov
Russian Federation
Sergei S. Kozlov
Moscow
L. I. Kuznetsov
Russian Federation
Leontiy I. Kuznetsov
Moscow
L. L. Larina
Russian Federation
Liudmila L. Larina
Moscow
A. B. Nikolskaya
Russian Federation
Anna B. Nikolskaya
Moscow
O. I. Shevaleevskiy
Russian Federation
Oleg I. Shevaleevskiy
Moscow
References
1. Tran D.T., Tran P.K.L., Malhotra D., Nguyen T.H., Duong N.T.A., Kim N.M., Le J.H. Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective. Nano Convergence, 2025, 12, P. 9.
2. Tahir M., Pan L., Idrees F., Zhang X., Wang L., Zou J.J., Wang Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, P. 136–157.
3. Zaman S., Huang L., Douka A.I., Yang H., You B., Xia B.Y. Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed., 2021, 60, P. 17832–17852.
4. Xiao B., Liu J., Fang J., Zeng J., Liu K., Feng S., Chen J., Lu X.F. Electrospun noble metal-based nanofibers for water electrolysis. Mater. Chem. Front., 2025, 9, P. 3125–3138.
5. Wang H., Chen Z.N., Wu D., Cao M., Sun F., Zhang H., You H., Zhuang W., Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc., 2021, 143, P. 4639–4645.
6. Reier T., Pawolek Z., Cherevko S., Bruns M., Jones T., Teschner D., Selve S., Bergmann A., Nong H.N., Schlogl R. Molecular insight in structure ¨ and activity of highly efficient, Low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). Am. Chem. Soc., 2015, 137, P. 13031– 13040.
7. Chen H., Guan C., Feng H. Pt-based high-entropy alloy nanoparticles as bifunctional electrocatalysts for hydrogen and oxygen evolution. ACS Appl. Nano Mater., 2022, 5, P. 9810–9817.
8. Feng G., Ning F., Song J., Shang H., Zhang K., Ding Z., Gao P., Chu W., Xia D., Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc., 2021, 143, P. 17117–17127.
9. Guo C., Jiao Y., Zheng Y.. Luo J., Davey K., Qiao S.-Z. Intermediate modulation on noble metal hybridized to 2D metal-organic framework for accelerated water electrocatalysis. Chem., 2019, 5, P. 2429–2441.
10. Jin Z., Lv J., Jia H., Liu W., Li H., Chen Z., Lin X., Xie G., Liu X., Sun S. Nanoporous Al–Ni–Co–Ir–Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small, 2019, 15, P. 1904180.
11. Chuluunbat E., Nguyen A.N., Omelianovych O., Szaniel A., Larina L.L., Choi H.S. Highly electrocatalytic activity of NixFey nanoporous for oxygen evolution reaction in water splitting. Int. J. Hydrog. Energy, 2024, 71, P. 102–109.
12. Lee G., Nguyen N.A., Nguyen V.T, Larina L.L., Chuluunbat E., Park E., Kim J., Choi, H.S. Keidar M. High entropy alloy electrocatalyst synthesized using plasma ionic liquid reduction. J. Solid State Chem., 2022, 314, P. 123388.
13. Nguyen V.T., Lee G.J., Ngo Q.T., Omelianovych O., Nguyen N.A., Trinh V.H., Choi H.S., Mnoyan A., Lee K., Larina L.L., Chen G. Robust carbonencapsulated Ni nanoparticles as high-performance electrocatalysts for the hydrogen evolution reaction in highly acidic media. Electrochimica Acta, 2021, 398, P. 139332.
14. Ngo Q.T., Omelianovych O., Nguyen V.T., Ahn B.T., Lee K.B., Lee G.J., Larina L.L., Choi H.S. An Economically sustainable NiC catalyst in a solar-to-hydrogen device employing a CIGS submodule. J. Mater. Chem. A, 2021, 9, P. 23828–23840.
15. Meng C., Wang X., Li Z.,Wu C., Chang L., Liu R., Pei W. Synthesis of FeCoNiCuPt high-entropy alloy nanoparticle electrocatalysts with various Pt contents by a solid-state reaction method. Materials Advances, 2024, 5, P. 719–729.
16. Chen H., Guan C., Feng H., Pt-based high-entropy alloy nanoparticles as bifunctional electrocatalysts for hydrogen and oxygen evolution. ACS Appl. Nano Mater., 2022, 5, P. 9810–9817.
Review
For citations:
Alexeeva O.V., Karyagina O.K., Kozlov S.S., Kuznetsov L.I., Larina L.L., Nikolskaya A.B., Shevaleevskiy O.I. Facile synthesis and characterization of FeCoNiPt alloy nanoparticle electrocatalysts with different Pt content. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):919-924. https://doi.org/10.17586/2220-8054-2025-16-6-919-924
