Formation of 2:1 Li-Fe-phyllosilicate with montmorillonite-like structure in hydrothermal conditions
https://doi.org/10.17586/2220-8054-2025-16-6-837-849
Abstract
We report on hydrothermal synthesis and structural characterization of Li–Fe-montmorillonite (MMT). To date, this 2:1 type phyllosilicate attracts attention due to such properties as high ion mobility, hydrophilicity, electrical and thermal resistance. Due to that, various MMTs may serve as perspective components of Li-ion batteries (electrolyte and separator fillers, as well as protective buffer layer on top of Li metal anode). Scarce data on synthetic Li–Fe3+-MMTs motivated us to investigate formation process and structure features of such phyllosilicate by X-ray diffraction, UV-visible and Mossbauer spectroscopy, and other methods. We established critical Fe3+ content and temperature range needed for almost single-phase MMTs formation. Around 20 % of total Fe may occupy tetrahedral site of MMT layer. Thermal behavior of Li–Fe-MMT strongly depends on hydrothermal synthesis conditions because of different Li+ amount present in the interlayer space and in the layer vacancies.
Keywords
About the Authors
A. A. IyakhmaevaRussian Federation
Asiyat A. Iyakhmaeva
194021 St. Petersburg
E. K. Khrapova
Russian Federation
Ekaterina K. Khrapova
194021 St. Petersburg
L. A. Lebedev
Russian Federation
Lev A. Lebedev
194021 St. Petersburg
N. V. Glebova
Russian Federation
Nadezhda V. Glebova
194021 St. Petersburg
V. G. Semenov
Russian Federation
Valentin G. Semenov
194021 St. Petersburg
A. V. Kopylov
Russian Federation
Andrey V. Kopylov
St. Petersburg, 194223
A. A. Krasilin
Russian Federation
Andrei A. Krasilin
194021 St. Petersburg
References
1. Perim E., Machado L.D., Galvao D.S. A brief review on syntheses, structures, and applications of nanoscrolls. Front. Mater., 2014, 1 (2003), P. 1–17.
2. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals, 2020, 10 (8), 654.
3. Gatina E.N., Maslennikova T.P. Formation of chrysotile nanotubes with titania in the internal channel. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (3), P. 380–387.
4. Kurguzkina M.E., Maslennikova T.P., Gusarov V.V. Formation, Morphology, and Size Parameters of Nanopowders Based on Mg3Si2O5(OH)4– Ni3Si2O5(OH)4 Nanoscrolls. Inorganic Materials, 2023, 59 (10), P. 1075–1084.
5. Drits V.A., Besson G., Muller F. An Improved Model for Structural Transformations of Heat-Treated Aluminous Dioctahedral 2:1 Layer Silicates. Clays Clay Miner., 1995, 43 (6), P. 718–731.
6. Emmerich K., et al. Clay profiling: The classification of montmorillonites. Clays Clay Miner., 2009, 57 (1), P. 104–114.
7. Garc´ıa-Romero E., et al. On the structural formula of smectites: a review and new data on the influence of exchangeable cations. J. Appl. Crystallogr., 2021, 54 (1), P. 251–262.
8. Zango Z.U., et al. Montmorillonite for Adsorption and Catalytic Elimination of Pollutants from Wastewater: A State-of-the-Arts Review. Sustainability, 2022, 14 (24), 16441.
9. Franc¸a D.B., et al. The versatility of montmorillonite in water remediation using adsorption: Current studies and challenges in drug removal. J. Environ. Chem. Eng., 2022, 10 (2), 107341.
10. Kryuchkova M., et al. Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int. J. Mol. Sci., 2021, 22 (18), 9670.
11. Golubeva O.Yu., et al. Increased Adsorption of Ciprofloxacin by Systematic Variation of the Composition of Synthetic Montmorilloinites. ACS Appl. Nano Mater., 2025, 8 (16), P. 8489–8498.
12. Polotskaya G.A., et al. Structure and Transport Properties of Cellulose Acetate/Montmorillonite Composites. Membranes and Membrane Technologies, 2022, 4 (6), P. 367–376.
13. Dumitru M.V., et al. Organically modified montmorillonite as pH versatile carriers for delivery of 5-aminosalicylic acid. Appl. Clay Sci., 2022, 218, 106415.
14. Nuruzzaman M., et al. Capability of Organically Modified Montmorillonite Nanoclay as a Carrier for Imidacloprid Delivery. ACS Agricultural Science & Technology, 2022, 2 (1), P. 57–68.
15. Ovchinnikov N.L., et al. The Preparation of Self-Cleaning Wool-Fiber–TiO2-Pillared Montmorillonite Composites with UV-Protection Properties. Protection of Metals and Physical Chemistry of Surfaces, 2023, 59 (3), P. 377–383.
16. Karthikeyan K., Thirumoorthi A. BiFeO3-Montmorillonite intercalated nano composites – synthesis and its characterization. Nanosystems: Physics, Chemistry, Mathematics, 2018, P. 631–640.
17. Huang W.J., et al. Recent advances in engineering montmorillonite into catalysts and related catalysis. Catal. Rev. Sci. Eng., 2023, 65 (3), P. 929– 985.
18. Wu L., et al. Montmorillonite-based materials for electrochemical energy storage. Green Chemistry, 2024, 26 (2), P. 678–704.
19. Chen C., Ma Y., Wang C. Investigation of electrochemical performance of montmorillonite clay as Li-ion battery electrode. Sustainable Materials and Technologies, 2019, 19, e00086.
20. Hao L., et al. Interlayer cation effects on optical and dielectric properties of montmorillonite in terahertz frequency band. Appl. Clay Sci., 2025, 274, 107857.
21. Qin Y., et al. Effect of Montmorillonite Layer Charge on the Thermal Stability of Bentonite. Clays Clay Miner., 2021, 69 (3), P. 328–338.
22. Berdinazarov Q., Khakberdiev E., Ashurov N. The effect of layered silicates on the morphological, rheological and mechanical properties of PA and PP blends. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15 (3), P. 410–417.
23. Makarov V.N., Kanygina O.N. Model of destruction of montmorillonite crystal structure in a microwave field. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (2), P. 153–160.
24. Zhang Y., et al. Separators Modified with Ultrathin Montmorillonite/Polymer Nanocoatings Achieve Dendrite-Free Lithium Deposition at High Current Densities. Nano Lett., 2024, 24 (29), P. 8834–8842.
25. Gorospe A.E.G., et al. Ultralong cycle lifespan in lithium metal batteries Unlocked by a lithiophilic montmorillonite separator. Mater. Lett., 2025, 401, 139240.
26. Para M.L., et al. Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator. Journal of Electroanalytical Chemistry, 2021, 880, 114876.
27. Wang W., Yang Y., Zhang J. Boosting Li+ Conductivity and Oxidation Stability of Solid Polymer Electrolytes Using a Sustainable Montmorillonite-Based Ion Conductor. Nano Lett., 2025, 25 (10), P. 3867–3874.
28. Zhou S., et al. Low-cost and high-safety montmorillonite-based solid electrolyte for lithium metal batteries. Appl. Clay Sci., 2024, 251, 107329.
29. Wang L., et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy Storage Mater., 2023, 63, 102961.
30. Yan H., Zhang Z. Effect and mechanism of cation species on the gel properties of montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125824.
31. Wu Z., et al. Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals, 2022, 12 (4), 477.
32. Wu Z., et al. The migration and occupation of Li+ and Na+ in illite and montmorillonite during the heating process. Mineral Mag., 2024, 88 (5), P. 536–545.
33. Semenov V.G., Moskvin L.N., Efimov A.A. Analytical potential of Mossbauer spectroscopy. ¨ Russian Chemical Reviews, 2006, 75 (4), P. 317–327.
34. Grazulis S., et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. ˙ Nucleic Acids Res., 2012, 40 (D1), P. D420–D427.
35. Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. JACS, 1938, 60 (2), P. 309–319.
36. Sing K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57 (4), P. 603–619.
37. Klein J., et al. Limitations of the Tauc Plot Method. Adv. Funct. Mater., 2023, 33 (47).
38. Gournis D., et al. A neutron diffraction study of alkali cation migration in montmorillonites. Phys Chem Miner., 2008, 35 (1), P. 49–58.
39. Antao S.M., Hassan I., Parise J.B. Cation ordering in magnesioferrite, MgFe2O4, to 982 ◦C using in situ synchrotron X-ray powder diffraction. American Mineralogist, 2005, 90 (1), P. 219–228.
40. Maslen E.N., et al. Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Crystallogr. B, 1994, 50 (4), P. 435–441.
41. Korytkova E.N., et al. Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russian J. of Inorganic Chemistry, 2007, 52 (3), P. 338–344.
42. Krasilin A.A., et al. Formation of variable-composition iron(III) hydrosilicates with the c¸hrysotile structure. Russ. J. Gen. Chem., 2016, 86 (12), P. 2581–2588.
43. Bloise A., et al. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers. Crystal Research and Technology, 2009, 44 (6), P. 590–596.
44. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr B., 1969, 25 (5), P. 925–946.
45. Khramchenkov M.G., et al. Microstructural transformations of swelling clay minerals. Georesursy, 2023, 25 (1), P. 108–118.
46. Khrapova E.K., Kozlov D.A., Krasilin A.A. Hydrothermal Synthesis of Hydrosilicate Nanoscrolls (Mg1−xCox)3Si2O5(OH)4 in a Na2SO3 Solution. Russian J. of Inorganic Chemistry, 2022, 67 (6), P. 839–849.
47. Cuadros J., et al. Controls on tetrahedral Fe(III) abundance in 2:1 phyllosilicates. American Mineralogist, 2019, 104 (11), P. 1608–1619.
48. Annersten H., Olesch M. Distribution of ferrous and ferric iron in clintonite and the Mossbauer characteristics of ferric iron in tetrahedral coordi- ¨ nation. Can. Mineral., 1978, 16, P. 199–203.
49. Darby Dyar M. A review of Mossbauer data on trioctahedral micas: Evidence for tetrahedral Fe ¨ 3+ and cation ordering. American Mineralogist, 1987, 72, P. 102–112.
50. Almjasheva O.V., et al. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84 (5), P. 804–809.
51. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (4), P. 568–572.
52. Krasilin A.A., et al. Young’s and shear moduli of Fe3+- doped chrysotile nanoscrolls probed by atomic force microscopy. Mater. Today Commun., 2024, 38, 108358.
53. Borghi E., et al. Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements. Phys. Chem. Chem. Phys., 2010, 12 (1), P. 227–238.
54. Kulkarni S.A., et al. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int., 2014, 40 (1), P. 1945–1949.
55. Mitra S., et al. Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology, 2007, 18 (27), 275608.
56. Kouotou P.M., et al. Particle size-band gap energy-catalytic properties relationship of PSE-CVD-derived Fe3O4 thin films. J. Taiwan Inst. Chem. Eng., 2018, 93, P. 427–435.
57. Trittschack R., Grobety B., Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non-isothermal/isothermal ´ thermogravimetric analysis and high-temperature X-ray powder diffraction study. Phys. Chem. Miner., 2014, 41 (3), P. 197–214.
58. Qin M., et al. In-situ observation of nanoscale transformations in dehydrating lizardite. Sci Rep., 2025, 15 (1), 4000.
59. Khrapova E.K., et al. Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation. ChemNanoMat., 2021, 7 (3), P. 257–269.
60. Li Q., et al. Revealing atomistic mechanism of lithium diffusion in montmorillonite structure: A molecular simulation study. Geochim. Cosmochim. Acta, 2025, 392, P. 165–174.
Review
For citations:
Iyakhmaeva A.A., Khrapova E.K., Lebedev L.A., Glebova N.V., Semenov V.G., Kopylov A.V., Krasilin A.A. Formation of 2:1 Li-Fe-phyllosilicate with montmorillonite-like structure in hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(6):837-849. https://doi.org/10.17586/2220-8054-2025-16-6-837-849
