Synthesis and thermal behavior of KCe2(PO4)3, a new full-member in the AIMIV2 (PO4)3 family
https://doi.org/10.17586/2220-8054-2023-14-1-112-119
Abstract
Hydrothermal treatment of nanoscale amorphous ceric phosphate gel in KOH aqueous solutions was found to result in a new KCe2(PO4)3 phase. The refinement of the KCe2(PO4)3 structure showed that it was isostructural to recently reported (NH4)Ce2(PO4)3. For the KCe2(PO4)3 phase, the unit cell parameters (sp. gr. C2/c) were a = 17.3781(3) A,˚ b = 6.7287(1) A,˚ c = 7.9711(2) A,˚ β = 102.351(1) ◦, V = 910.53(4) A˚ 3, Z = 4. The thermal decomposition of KCe2(PO4)3 at 800 ◦C resulted in the mixture of crystalline CePO4 and KPO3.
About the Authors
T. O. KozlovaRussian Federation
Taisiya O. Kozlova,
Leninsky prospect, 31, Moscow, 119991.
D. N. Vasilyeva
Russian Federation
Darya N. Vasilyeva,
Leninsky prospect, 31, Moscow, 119991;
Myasnitskaya str., 20, Moscow, 101000.
D. A. Kozlov
Russian Federation
Daniil A. Kozlov,
Leninsky prospect, 31, Moscow, 119991;
Leninskie Gory 1, Moscow, 119991.
M. A. Teplonogova
Russian Federation
Mariia A. Teplonogova,
Leninsky prospect, 31, Moscow, 119991;
Leninskie Gory 1, Moscow, 119991.
A. E. Baranchikov
Russian Federation
Alexander E. Baranchikov,
Leninsky prospect, 31, Moscow, 119991.
N. P. Simonenko
Russian Federation
Nikolay P. Simonenko,
Leninsky prospect, 31, Moscow, 119991.
V. K. Ivanov
Russian Federation
Vladimir K. Ivanov,
Leninsky prospect, 31, Moscow, 119991.
References
1. Pet’kov V.I. Complex phosphates formed by metal cations in oxidation states I and IV. Russ. Chem. Rev., 2012, 81, P. 606–637.
2. Locock A.J. Crystal chemistry of actinide phosphates and arsenates. Struct. Chem. Inorg. Actin. Compd., Elsevier, Amsterdam, 2007, P. 217–278.
3. Dacheux N., Clavier N., Robisson A.C., Terra O., Audubert F., Lartigue J.E., Guy C. Immobilisation of actinides in phosphate matrices.´ Comptes Rendus Chim., 2004, 7, P. 1141–1152.
4. Neumeier S., Arinicheva Y., Ji Y., Heuser, Julia M. Kowalski P.M., Kegler P., Schlenz H., Bosbach D., Deissmann G. New insights into phosphate based materials for the immobilisation of actinides. Radiochim. Acta., 2017, 105, P. 961–984.
5. Orlova A.I., Kitaev D.B., Volkov Yu.F., Pet’kov V.I., Kurazhkovskaya V.S., Spiridonova M.L. Double phosphates of Ce(IV) and some mono- and bivalent elements. Radiochemistry, 2001, 43, P. 225–228.
6. Achary S.N., Bevara S., Tyagi A.K. Recent progress on synthesis and structural aspects of rare-earth phosphates. Coord. Chem. Rev., 2017, 340, P. 266–297.
7. Asabina E., Sedov V., Pet’kov V., Deyneko D., Kovalsky A. Synthesis, structure and luminescence properties of the europium–containing NASICON type phosphates. J. Sol-Gel Sci. Technol., 2023.
8. Krutyak N., Spassky D., Deyneko D.V., Antropov A., Morozov V.A., Lazoryak B.I., Nagirnyi V. NASICON-type Na3.6Lu1.8−x(PO4)3:xEu3+ phosphors: Structure and luminescence. Dalt. Trans., 2022, 51, P. 11840–11850.
9. Kozlova T.O., Popov A.L., Kolesnik I.V., Kolmanovich D.D., Baranchikov A.E., Shcherbakov A.B., Ivanov V.K. Amorphous and crystalline cerium(IV) phosphates: Biocompatible ROS-scavenging sunscreens. J. Mater. Chem. B., 2022, 10, P. 1775–1785.
10. Kozlova T.O., Baranchikov A.E., Ivanov V.K. Cerium(IV) orthophosphates (Review). Russ. J. Inorg. Chem., 2021, 66, P. 1761–1778.
11. So Y.M., Leung W.H. Recent advances in the coordination chemistry of cerium(IV) complexes. Coord. Chem. Rev., 2017, 340, P. 172–197.
12. Hartley W.N. Contributions to the chemistry of cerium compounds. J. Chem. Soc. Trans., 1882, 41, P. 202–209.
13. Sroor F.M.A., Edelmannand F.T. Tetravalent chemistry: Inorganic. Rare Earth Elem. Fundam. Appl., John Wiley & Sons Ltd, Chichester, 2012, P. 313–320.
14. Shekunova T.O., Istomin S.Y., Mironov A.V., Baranchikov A.E., Yapryntsev A.D., Galstyan A.A., Simonenko N.P., Gippius A.A., Zhurenko S.V., Shatalova T.B., Skogareva L.S., Ivanov V.K. Crystallization pathways of cerium(IV) phosphates under hydrothermal conditions: A search for new phases with a tunnel structure. Eur. J. Inorg. Chem., 2019, 27, P. 3242–3248.
15. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1969, 25, P. 925–946.
16. Sidey V. On the effective ionic radii for ammonium. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2016, 72, P. 626–633.
17. Salvado M.A., Pertierra P., Bortun A.I., Trobajo C., Garcia J.R. Phosphorous acid and urea: Valuable sources of phosphorus and nitrogen in the´ hydrothermal synthesis of ammonium-thorium phosphates. Inorg. Chem., 2008, 47, P. 7207–7210.
18. Matkovic B., Prodic B., Sljukic M. The crystal structure of potassium dithorium trisphosphate, KTh2(PO4)3. Croat. Chem. Acta., 1968, 40, P. 147.
19. Bevara S., Achary S.N., Patwe S.J., Sinha A.K., Tyagi A.K. Preparation and crystal structure of K2Ce(PO4)2: A new complex phosphate of Ce(IV) having structure with one-dimensional channels. Dalt. Trans., 2016, 45, P. 980–991.
20. Yu N., Klepov V.V., Schlenz H., Bosbach D., Kowalski P.M., Li Y., Alekseev E.V. Cation-dependent structural evolution in A2Th(TV O4)2 (A = Li, Na, K, Rb, Cs; T = P and As) series. Cryst. Growth Des., 2017, 17, P. 1339–1346.
21. Shekunova T.O., Baranchikov A.E., Ivanova O.S., Skogareva L.S., Simonenko N.P., Karavanova Yu. A., Lebedev V.A., Borilo L.P., Ivanov V.K. Cerous phosphate gels: Synthesis, thermal decomposition and hydrothermal crystallization paths. J. Non. Cryst. Solids., 2016, 447, P. 183–189.
22. Kozlova T.O., Mironov A.V., Istomin S.Y., Birichevskaya K.V., Gippius A.A., Zhurenko S.V., Shatalova T.B., Baranchikov A.E., Ivanov V.K. Meet the cerium(IV) phosphate sisters: CeIV (OH)PO4 and CeIV2 O(PO4)2. Chem. – A Eur. J., 2020, 26, P. 12188–12193.
23. Kolesnik I.V., Shcherbakov A.B., Kozlova T.O., Kozlov D.A., Ivanov V.K. Comparative analysis of sun protection characteristics of nanocrystalline cerium dioxide. Russ. J. Inorg. Chem., 2020, 65, P. 960–966.
24. Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms., 2010, 268, P. 334–340.
25. Ni Y., Hughes J.M., Mariano A.N. Crystal chemistry of the monazite and xenotime structures. Am. Mineral., 1995, 80, P. 21–26.
26. Jost K.H., Schulze H.J. Zur phasentransformation des kaliumpolyphosphates (KPO3)x. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1969, 25, P. 1110–1118.
27. Graulis S., Chateigner D., Downs R.T., Yokochi A.F.T., Quiros M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography´ Open Database – An open-access collection of crystal structures. J. Appl. Crystallogr., 2009, 42, P. 726–729.
28. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. Biological, biomedical and pharmaceutical applications of cerium oxide. Cerium Oxide (CeO2): Synthesis, Properties and Applications, 2020, Elsevier, Amsterdam, P. 279–358.
29. Plakhova T.V., Romanchuk A.Y., Yakunin S.N., Dumas T., Demir S., Wang S., Minasian S.G., Shuh D.K., Tyliszczak T., Shiryaev A.A., Egorov A.V., Ivanov V.K., Kalmykov S.N. Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling. J. Phys. Chem. C, 2016, 120(39), P. 22615–22626.
30. Baranchikov A.E., Polezhaeva O.S., Ivanov V.K., Tretyakov Y.D. Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. Cryst EngComm, 2010, 12(11), P. 3531–3533.
31. Enikeeva M.O., Proskurina O.V., Danilovich D.P., Gusarov V.V. Formation of nanocrystals based on equimolar mixture of lanthanum and yttrium orthophosphates under microwave-assisted hydrothermal synthesis. Nanosyst.: Phys. Chem. Math., 2020, 11(6), P. 705–715.
32. Kozlova T.O., Vasil’eva D.N., Kozlov D.A., Teplonogova M.A., Birichevskaya K.V., Baranchikov A.E., Gavrikov A.V., Ivanov V.K. On the chemical stability of CeIV (PO4)(HPO4)0.5(H2O)0.5 in alkaline media. Russ. J. Inorg. Chem., 2022, 67, P. 1901–1907.
33. Skogareva L.S., Shekunova T.O., Baranchikov A.E., Yapryntsev A.D., Sadovnikov A.A., Ryumin M.A., Minaeva N.A., Ivanov V.K. Synthesis of cerium orthophosphates with monazite and rhabdophane structure from phosphoric acid solutions in the presence of hydrogen peroxide. Russ. J. Inorg. Chem., 2016, 61, P. 1219–1224.
34. Brandel V., Clavier N., Dacheux N. Synthesis and characterization of uranium (IV) phosphate-hydrogenphosphate hydrate and cerium (IV) phosphate-hydrogenphosphate hydrate. J. Solid State Chem., 2005, 178, P. 1054–1063.
35. Topic M., Napijalo M., Popovi´ c S. Zelji´ c Z. Temperature Dependence of Some Properties of NaTh´ 2(PO4)3 Ferroelectric Crystals. Phys. stat. sol., 1972, 11, P. 787–790.
36. Guesdon A., Provost J., Ravcau B. New thorium and uranium monophosphates in the KTh2(PO4)3 family: Structure and cationic nonstoichiometry. J. Mater. Chem., 1999, 9, P. 2583–2587.
37. Brandel V., Dacheux N. Chemistry of tetravalent actinide phosphates – Part II. J. Solid State Chem., 2004, 177, P. 4755–4767.
38. Orlova A.I., Kitaev D.B., Kazantsev N.G., Samoilov S.G. Double phosphates of Ce (IV) and some mono- and divalent elements: synthesis and crystal structure. Radiochemistry, 2002, 44, P. 326–331.
39. Bregiroux D., Terra O., Audubert F., Dacheux N., Serin V., Podor R., Bernache-Assollant D. Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg. Chem., 2007, 46, P. 10372–10382.
40. Bamberger C.E., Begun G.M., Brynestad J., Land J.F. Simultaneous precipitation of phosphates of Bi (III) and Ce(IV) or Ce (III). Characterization of precipitates and their ignition products. Radiochim. Acta., 1982, 31, P. 57–64.
41. Popa K., Bregiroux D., Konings R.J.M., Gouder T., Popa A.F., Geisler T., Raison P.E. The chemistry of the phosphates of barium and tetravalent cations in the 1:1 stoichiometry. J. Solid State Chem., 2007, 180, P. 2346–2355.
42. Kozlova T.O., Baranchikov A.E., Birichevskaya K.V., Kozlov D., Simonenko N.P., Gavrikov A.V., Teplonogova M.A., Ivanov V.K. On the thermal decomposition of cerium(IV) hydrogen phosphate Ce(PO4)(HPO4)0.5(H2O)0.5. Russ. J. Inorg. Chem., 2021, 66, P. 1624–1632.
43. Dacheux N., Podor R., Brandel V., Genet M. Investigations of systems ThO2–MO2–P2O5 (M = U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates. J. Nucl. Mater., 1998, 252, P. 179–186.
44. Bevara S., Mishra K.K., Patwe S.J., Ravindran T.R., Gupta M.K., Mittal R.K., P.S. Ram, Sinha A.K., Achary S.N., Tyagi A.K. Phase transformation, vibrational and electronic properties of K2Ce(PO4)2: A combined experimental and theoretical study. Inorg. Chem., 2017, 56, P. 3335–3348.
45. Clavier N., Mesbah A., Szenknect S., Dacheux N. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., 2008, 205, P. 85–94.
46. Jerroudi M., Bih L., Azrour M., Manoun B., Saadoune I., Lazor P. Investigation of novel low melting phosphate glasses inside the Na2O–K2O– ZnO–P2O5 system. J. Inorg. Organomet. Polym. Mater., 2020, 30, P. 532–542.
47. Nassar A.M., El Oker M.M., Radwan S.N., Nabhan E. Effect of MO (CuO, ZnO, and CdO) on the compaction of sodium meta phosphate sealing glass. Curr. Sci. Int., 2013, 2, P. 1–7.
48. Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO). Results Phys., 2017, 7, P. 119–125.
49. Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M., Moustafa F.A., Elbadry Kh.M. Spectroscopic studies of lithium phosphate, lead phosphate and zinc phosphate glasses containing TiO2: Effect of gamma irradiation. J. Mol. Struct., 2013, 1035, P. 209–217.
50. Szczygiel I. The system CePO4-KPO3-Ce(PO3)3. Thermochim. Acta., 2003, 402, P. 153–158.
Review
For citations:
Kozlova T.O., Vasilyeva D.N., Kozlov D.A., Teplonogova M.A., Baranchikov A.E., Simonenko N.P., Ivanov V.K. Synthesis and thermal behavior of KCe2(PO4)3, a new full-member in the AIMIV2 (PO4)3 family. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):112-119. https://doi.org/10.17586/2220-8054-2023-14-1-112-119