Quantum random number generator using vacuum fluctuations
https://doi.org/10.17586/2220-8054-2021-12-2-156-160
Abstract
Experimental implementation of a quantum random number generator based on vacuum fluctuation is presented in this paper. A Y-splitter is used in optical setup of the quantum random number generator. The generation of random numbers in real time with a speed of 300 Mb/s is demonstrated. The conditional minimum entropy is used to estimate the randomness. A cryptographic hashing function is used for post-processing. The resulting sequence has passed DieHard and NIST statistical tests successfully.
About the Authors
B. E. PervushinRussian Federation
Kronverkskiy, 49, St. Petersburg, 197101
M. A. Fadeev
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
A. V. Zinovev
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
R. K. Goncharov
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
A. A. Santev
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
A. E. Ivanova
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
E. O. Samsonov
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
References
1. Ferrenberg A.M., Landau D.P., et. al. Monte Carlo simulations: Hidden errors from “good” random number generators. Physical Review Letters, 1992, 69 (23), 3382.
2. Gennaro R. Randomness in cryptography. IEEE security & privacy, 2006, 4 (2), P. 64–67.
3. Gisin N., Ribordy G., et. al. Quantum cryptography. Reviews of modern physics, 2002, 74 (1), 145.
4. Metropolis N., Ulam S. The monte carlo method. Journal of the American statistical association, 1949, 44 (247), P. 335–341.
5. Nisan N., Wigderson A. Hardness vs randomness. Journal of computer and System Sciences, 1994, 49 (2), P. 149–167.
6. Johnston D. Random Number Generators – Principles and Practices: A Guide for Engineers and Programmers. Walter de Gruyter GmbH & Co KG: 2018, 439 p.
7. Jennewein T., Achleitner U., et. al. A fast and compact quantum random number generator. Review of Scientific Instruments. 2000, 71 (4), P. 1675–1680.
8. Pironio S., Acin A., Massar S., et. al. Random numbers certified by Bell’s theorem. Nature, 2010, 464 (7291), P. 1021–1024.
9. Guo H., Tang W., et. al. Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 2010, 81 (5), 051137.
10. Shi Y., Chng B., et. al. Random numbers from vacuum fluctuations. Applied Physics Letters, 2016, 109 (4), 041101.
11. Kiselev F.D., Samsonov E.O., Gleim A.V. Modeling of linear optical controlled-Z quantum gate with dimensional errors of passive components. Nanosyst.: Phys. Chem. Math., 2019, 10 (6), P. 627–631.
12. Raffaelli F., et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Science and Technology, 2018, 3 (2), 025003.
13. Gabriel C., Wittmann C., et al. A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 2010, 4 (10), P. 711–715.
14. Ivanova A.E., Chivilikhin S.A., et al. How scatter of the experimental parameters affects the statistical characteristics of a quantum randomnumber generator. J. Opt. Technol., 2014, 81 (8), P. 427–430.
15. Haw J.Y., Assad S.M., et. al. Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 2015, 3 (5), 054004.
16. Guo X., Liu R., et. al. Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy, 2018, 20 (11), 819.
17. Marsaglia G. DIEHARD Test suite, 1998. URL: http://www. stat. fsu. edu/pub/diehard.
18. Rukhin A., et. al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, 2010.
19. Grynberg G., et. al. Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press, 2010.
20. Ivanova A.E., Chivilikhin S.A., Miroshnichenko G.P., Gleim A.V. Fiber quantum random number generator, based on vacuum fluctuations. Nanosyst.: Phys. Chem. Math., 2017, 8 (4), P. 441–446.
21. Ivanova A.E., Chivilikhin S.A., Gleim A.V. The use of beam and fiber splitters in quantum random number generators based on vacuum fluctuations. Nanosyst.: Phys. Chem. Math., 2016, 7 (2), P. 378–383.
22. Ivanova A.E. Quantum generation of random bit sequences based on vacuum fluctuations in a fiber-optic circuit. PhD Thesis, St. Petersburg, 2017, 121 p.
23. Tomamichel M., et. al. Leftover hashing against quantum side information. IEEE Transactions on Information Theory, 2011, 57 (8), P. 5524– 5535.
Review
For citations:
Pervushin B.E., Fadeev M.A., Zinovev A.V., Goncharov R.K., Santev A.A., Ivanova A.E., Samsonov E.O. Quantum random number generator using vacuum fluctuations. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):156-160. https://doi.org/10.17586/2220-8054-2021-12-2-156-160