Квантовый генератор случайных чисел на основе вакуумных флуктуаций
https://doi.org/10.17586/2220-8054-2021-12-2-156-160
Аннотация
В работе представлена экспериментальная реализация квантового генератора случайных чисел на основе вакуумных флуктуаций. В оптической схеме используется Y-делитель. Продемонстрирована генерация случайных чисел в реальном времени со скоростью 300 Мбит/с. Условная min-энтропия используется для оценки случайности. Криптографическая хеш-функция используется для постобработки. Полученная последовательность успешно прошла статистические тесты DieHard и NIST.
Об авторах
Борис Е. ПервушинРоссия
Kronverkskiy, 49, St. Petersburg, 197101
Максим А. Фадеев
Россия
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
Александр В. Зиновьев
Россия
Kronverkskiy, 49, St. Petersburg, 197101
Роман К. Гончаров
Россия
Kronverkskiy, 49, St. Petersburg, 197101
Алексей А. Сантьев
Россия
Kronverkskiy, 49, St. Petersburg, 197101
Алена Е. Иванова
Россия
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
Эдуард О. Самсонов
Россия
Kronverkskiy, 49, St. Petersburg, 197101,
6 liniya, Vasilievsky island d.59, korp. 1, lit. B, St. Petersburg, 199178
Список литературы
1. Ferrenberg A.M., Landau D.P., et. al. Monte Carlo simulations: Hidden errors from “good” random number generators. Physical Review Letters, 1992, 69 (23), 3382.
2. Gennaro R. Randomness in cryptography. IEEE security & privacy, 2006, 4 (2), P. 64–67.
3. Gisin N., Ribordy G., et. al. Quantum cryptography. Reviews of modern physics, 2002, 74 (1), 145.
4. Metropolis N., Ulam S. The monte carlo method. Journal of the American statistical association, 1949, 44 (247), P. 335–341.
5. Nisan N., Wigderson A. Hardness vs randomness. Journal of computer and System Sciences, 1994, 49 (2), P. 149–167.
6. Johnston D. Random Number Generators – Principles and Practices: A Guide for Engineers and Programmers. Walter de Gruyter GmbH & Co KG: 2018, 439 p.
7. Jennewein T., Achleitner U., et. al. A fast and compact quantum random number generator. Review of Scientific Instruments. 2000, 71 (4), P. 1675–1680.
8. Pironio S., Acin A., Massar S., et. al. Random numbers certified by Bell’s theorem. Nature, 2010, 464 (7291), P. 1021–1024.
9. Guo H., Tang W., et. al. Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 2010, 81 (5), 051137.
10. Shi Y., Chng B., et. al. Random numbers from vacuum fluctuations. Applied Physics Letters, 2016, 109 (4), 041101.
11. Kiselev F.D., Samsonov E.O., Gleim A.V. Modeling of linear optical controlled-Z quantum gate with dimensional errors of passive components. Nanosyst.: Phys. Chem. Math., 2019, 10 (6), P. 627–631.
12. Raffaelli F., et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Science and Technology, 2018, 3 (2), 025003.
13. Gabriel C., Wittmann C., et al. A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 2010, 4 (10), P. 711–715.
14. Ivanova A.E., Chivilikhin S.A., et al. How scatter of the experimental parameters affects the statistical characteristics of a quantum randomnumber generator. J. Opt. Technol., 2014, 81 (8), P. 427–430.
15. Haw J.Y., Assad S.M., et. al. Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 2015, 3 (5), 054004.
16. Guo X., Liu R., et. al. Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy, 2018, 20 (11), 819.
17. Marsaglia G. DIEHARD Test suite, 1998. URL: http://www. stat. fsu. edu/pub/diehard.
18. Rukhin A., et. al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, 2010.
19. Grynberg G., et. al. Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge university press, 2010.
20. Ivanova A.E., Chivilikhin S.A., Miroshnichenko G.P., Gleim A.V. Fiber quantum random number generator, based on vacuum fluctuations. Nanosyst.: Phys. Chem. Math., 2017, 8 (4), P. 441–446.
21. Ivanova A.E., Chivilikhin S.A., Gleim A.V. The use of beam and fiber splitters in quantum random number generators based on vacuum fluctuations. Nanosyst.: Phys. Chem. Math., 2016, 7 (2), P. 378–383.
22. Ivanova A.E. Quantum generation of random bit sequences based on vacuum fluctuations in a fiber-optic circuit. PhD Thesis, St. Petersburg, 2017, 121 p.
23. Tomamichel M., et. al. Leftover hashing against quantum side information. IEEE Transactions on Information Theory, 2011, 57 (8), P. 5524– 5535.
Рецензия
Для цитирования:
Первушин Б.Е., Фадеев М.А., Зиновьев А.В., Гончаров Р.К., Сантьев А.А., Иванова А.Е., Самсонов Э.О. Квантовый генератор случайных чисел на основе вакуумных флуктуаций. Наносистемы: физика, химия, математика. 2021;12(2):156-160. https://doi.org/10.17586/2220-8054-2021-12-2-156-160
For citation:
Pervushin B.E., Fadeev M.A., Zinovev A.V., Goncharov R.K., Santev A.A., Ivanova A.E., Samsonov E.O. Quantum random number generator using vacuum fluctuations. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):156-160. https://doi.org/10.17586/2220-8054-2021-12-2-156-160