A quantum chemical study on the magnetic nanocarrier-tirapazamine drug delivery system
https://doi.org/10.17586/2220-8054-2021-12-2-167-174
Abstract
Magnetic nanoparticles are among the most important carriers for the delivery of anticancer drugs. Four important noncovalent interactions between tirapazamine anticancer drug (TPZ) and magnetic nanoparticle Fe6(OH)18(H2O)6 (MNP) have been examined by using density functional theory (DFT). Important interactions are those where the drug approaches the magnetic nanocarrier via NH2 (MNP/TPZ1), NO (MNP/TPZ2-3) and intraring N-atom (MNP/TP4) functional groups. The negative values of binding energies and quantum molecular descriptor showed that these interactions contribute to the stability of the system. By increasing the temperature, TPZ can bond to MNP through NH2 (NH2 mechanism), NO (NO mechanisms) and intraring N-atom (N mechanism) functional groups. The activation parameters of four mechanisms were evaluated using quadratic synchronous transit method. Relative energies indicate that the product of the NH2 mechanism is more stable but is produced more slowly (thermodynamic product). In contrast, the products of the NO mechanisms are kinetic products.
About the Authors
S. AvarandIslamic Republic of Iran
Department of Chemistry, Mashhad Branch
Mashhad
A. Morsali
Islamic Republic of Iran
Department of Chemistry, Mashhad Branch
Mashhad
M. M. Heravi
Islamic Republic of Iran
Department of Chemistry, Mashhad Branch
Mashhad
S. А. Beyramabadi
Islamic Republic of Iran
Department of Chemistry, Mashhad Branch
Mashhad
References
1. Lu A.H., Salabas E.e.L., Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. ¨ Angew. Chem. Int. Ed., 2007, 46, P. 1222–1244.
2. Jun Y.-w., Seo J.-w., Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res., 2008, 41, P. 179–189.
3. Goll D. Magnetism of nanostructured materials for advanced magnetic recording. Int. J. Mater. Res., 2009, 100, P. 652–662.
4. Albadi Y., Martinson K.D., et al. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: the effect of strong agglomeration on the magnetic behavior. Nanosystems: Phys. Chem. Math., 2020, 11, P. 252–259.
5. Galli M., Guerrini A., et al. Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Adv., 2017, 7, P. 15500– 15512.
6. Neamtu J., Verga N. Magnetic nanoparticles for magneto-resonance imaging and targeted drug delivery. Dig. J. Nanomater. Biostruct., 2011, 6, P. 969–978.
7. Liu Y.-L., Chen D., Shang P., Yin D.-C. A review of magnet systems for targeted drug delivery. J. Controlled Release, 2019, 302, P. 90–104.
8. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 2003, 36, R167.
9. Arruebo M., Fernandez-Pacheco R., Ibarra M.R., Santamar ´ ´ıa J. Magnetic nanoparticles for drug delivery. Nano today, 2007, b, P. 22–32.
10. Akbarzadeh A., Samiei M., Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7, 144.
11. Bi H., Han X. Magnetic field triggered drug release from lipid microcapsule containing lipid-coated magnetic nanoparticles. Chem. Phys. Lett., 2018, 706, P. 455–460.
12. Roohi R., Emdad H., Jafarpur K. A comprehensive study and optimization of magnetic nanoparticle drug delivery to cancerous tissues via external magnetic field. J. Test. Eval., 2019, 47, P. 681–703.
13. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev. Res., 2006, 67, P. 55–60.
14. Namdeo M., Saxena S., et al. Magnetic nanoparticles for drug delivery applications. J. Nanosci. Nanotechnol., 2008, 8, P. 3247–3271.
15. Hossen S., Hossain M.K., et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, P. 1–18.
16. Ostroushko A.A., Gagarin I.y.D., Danilova I.G., Gette I.F. The use of nanocluster polyoxometalates in the bioactive substance delivery systems. Nanosystems: Phys. Chem. Math., 2019, 10, P. 318–349.
17. Shanmuganathan R., Edison T.N.J.I., et al. Chitosan nanopolymers: an overview of drug delivery against cancer. Int. J. Biol. Macromol., 2019, 130, P. 727–736.
18. Popova N., Popov A., Shcherbakov A., Ivanov V. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents. Nanosystems: Phys. Chem. Math., 2017, 8, P. 282–289.
19. Ramasamy T., Ruttala H.B., et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J. Controlled Release, 2017, 258, P. 226–253.
20. Pennock G.D., Dalton W.S., et al. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J. Natl. Cancer Inst., 1991, 83, P. 105–110.
21. Lindley C., McCune J.S., et al. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer pract., 1999, 7, P. 59–65.
22. Arias J.L., Gallardo V., Ruiz M.A., Delgado A.V. Magnetite/poly (alkylcyanoacrylate)(core/shell) nanoparticles as 5-Fluorouracil delivery ´ systems for active targeting. Eur. J. Pharm. Biopharm., 2008, 69, P. 54–63.
23. Wagstaff A.J., Brown S.D., et al. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorg. Chim. Acta, 2012, 393, P. 328–333.
24. Cengelli F., Grzyb J.A., et al. Surface-Functionalized Ultrasmall Superparamagnetic Nanoparticles as Magnetic Delivery Vectors for Camptothecin. ChemMedChem, 2009, 4, P. 988–997.
25. Zhu K., Deng Z., et al. Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (spion) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules, 2017, 50, P. 1113–1125.
26. Kohler N., Sun C., et al. Methotrexate-Immobilized Poly (ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery. Small, 2006, 2, P. 785–792.
27. Majd M.H., Asgari D., et al. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids and Surfaces B: Biointerfaces, 2013, 106, P. 117–125.
28. Chen Y.C., Lee W.F., Tsai H.H., Hsieh W.Y. Paclitaxel and iron oxide loaded multifunctional nanoparticles for chemotherapy, fluorescence properties, and magnetic resonance imaging. J. Biomed. Mater. Res. A, 2012, 100, P. 1279–1292.
29. Depalo N., Iacobazzi R.M., et al. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Research, 2017, 10, P. 2431–2448.
30. Kim D.H., Guo Y., et al. Temperature-Sensitive Magnetic Drug Carriers for Concurrent Gemcitabine Chemohyperthermia. Adv. Healthc. Mater., 2014, 3, P. 714–724.
31. Dorniani D., bin Hussein M.Z., et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system. Drug Des. Devel. Ther., 2013, 7, 1015.
32. Krukemeyer M.G., Krenn V., Jakobs M., Wagner W. Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver—magnetic nanoparticles in cancer treatment. J. Surg. Res., 2012, 175, P. 35–43.
33. Sood A., Arora V., et al. Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater. Sci. Eng.: C, 2017, 80, P. 274–281.
34. Hemalatha T., Prabu P., Gunadharini D.N., Gowthaman M.K. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging. Int. J. Biol. Macromol., 2018, 112, P. 250–257.
35. Santra S., Tapec R., et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir, 2001, 17, P. 2900–2906.
36. Khashan K.S., Sulaiman G.M., Mahdi R. Preparation of iron oxide nanoparticles-decorated carbon nanotube using laser ablation in liquid and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol., 2017, 45, P. 1699–1709.
37. Kim D., Zhang Y., et al. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater., 2001, 225, P. 30–36.
38. Hou X., Zhang X., et al. Surface-enhanced Raman scattering of C60 on co-modified substrate of Fe3O4 and Au nanoparticles. Chem. Phys., 2010, 372, P. 1–5.
39. Emtiazi G., Zohrabi T., et al. Covalent diphenylalanine peptide nanotube conjugated to folic acid/magnetic nanoparticles for anti-cancer drug delivery. Journal of Drug Delivery Science and Technology, 2017, 41, P. 90–98.
40. Jiang S., Eltoukhy A.A., et al. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett., 2013, 13, P. 1059– 1064.
41. Sharifabad M.E., Mercer T., Sen T. Drug-loaded liposome-capped mesoporous core–shell magnetic nanoparticles for cellular toxicity study. Nanomedicine, 2016, 11, P. 2757–2767.
42. Tassa C., Shaw S.Y., Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res., 2011, 44, P. 842–852.
43. Kievit F.M., Veiseh O., et al. PEI–PEG–chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv. Funct. Mater., 2009, 19, P. 2244–2251.
44. Lee H., Lee E., et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc., 2006, 128, P. 7383–7389.
45. McBain S., Yiu H., El Haj A., Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem., 2007, 17, P. 2561–2565.
46. Shabani Z., Morsali A., Bozorgmehr M.R., Beyramabadi S.A. Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine. Chem. Phys. Lett., 2019, 719, P. 12–21.
47. Lotfi M., Morsali A., Bozorgmehr M.R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl. Surf. Sci., 2018, 462, P. 720–729.
48. Naghavi F., Morsali A., Bozorgmehr M.R. Molecular mechanism study of surface functionalization of silica nanoparticle as an anticancer drug nanocarrier in aqueous solution. J. Mol. Liq., 2019, 282, P. 392–400.
49. Hadi L., Ali M., Momen H.M. The prediction of COOH functionalized carbon nanotube application in melphalan drug delivery. Nanosystems: Phys. Chem. Math., 2019, 10, P. 438–446.
50. Najafi M., Morsali A., Bozorgmehr M.R. DFT study of SiO 2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Struct. Chem., 2018, P. 1–12.
51. Nasrabadi M., Beyramabadi S.A., Morsali A. Surface functionalization of chitosan with 5-nitroisatin. Int. J. Biol. Macromol., 2020, 147, P. 534–546.
52. Bokarev A., Plastun I. Possibility of drug delivery due to hydrogen bonds formation in nanodiamonds and doxorubicin: molecular modeling. Nanosystems: Phys. Chem. Math., 2018, 9, P. 370–377.
53. Khoshbayan B., Morsali A., Bozorgmehr M.R. Structural and Electronic Properties of Cyclic Peptide-gold Nanoparticle as a Drug Delivery System. Chinese J. Struc. Chem., 2019, 38, P. 566–580.
54. Denny W.A. Prospects for hypoxia-activated anticancer drugs. Curr. Med. Chem. Anticancer Agents, 2004, 4, P. 395–399.
55. Zeman E.M., Brown J.M., et al. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12, P. 1239–1242.
56. Frisch M., Trucks G.,et al. G09 Gaussian Inc. Gaussian 09, revision B.01. Gaussian, Inc., Wallingford, CT, 2009.
57. Cammi R., Tomasi J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrixinversion procedures and the renormalization of the apparent charges. J. Comput. Chem., 1995, 16, P. 1449–1458.
58. Tomasi J., Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev., 1994, 94, P. 2027–2094.
59. Parr R.G., Szentpaly L.v., Liu S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, P. 1922–1924.
60. Jayarathne L., Ng W.J., et al. Fabrication of succinic acid-γ-Fe2O3 nano core–shells. Colloids Surf. A, 2012, 403, P. 96–102.
61. Douziech-Eyrolles L., Marchais H., et al. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine, 2007, 2, P. 541–550.
62. Mahmoudi M., Sant S., et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63, P. 24–46.
Review
For citations:
Avarand S., Morsali A., Heravi M.M., Beyramabadi S.А. A quantum chemical study on the magnetic nanocarrier-tirapazamine drug delivery system. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):167-175. https://doi.org/10.17586/2220-8054-2021-12-2-167-174