Additive effects of green LED light and cerium oxide nanoparticles on the planarian’s regeneration
https://doi.org/10.17586/2220-8054-2021-12-2-175-181
Abstract
Nanotechnology makes it possible to design advanced materials being able to effectively modulate radiation effects on a cell, depending on the radiation intensity, wavelength, and type. Today, one of the most promising UV and X-ray protective biomaterials is nanocrystalline cerium oxide (CeO2), which has a unique redox activity due to its surface reducibility. Meanwhile, the modulating properties of CeO2 nanoparticles when the cells are exposed to visible light remain completely unexplored. Here, we analyzed the impact of CeO2 nanoparticles on the process of planarian regeneration after exposure to low-intensity green LED light. It was found that a one-time exposure (10 or 25 min) of regenerating planarians with low-intensity green light reduced head blastema growth rate by up to 20%. At the same time, the preliminary treatment of planaria with CeO2 nanoparticles in nanomolar concentrations (10-11 M) ensures the restoration of the neoblasts activity and a significant acceleration of blastema regeneration. Thus, we have firstly demonstrated that the planarian regeneration process can be promoted by cerium oxide nanoparticles even under adverse action of low-intensity green light radiation.
About the Authors
A. M. ErmakovRussian Federation
Institutskaya str., 3, Pushchino, 142290
K. A. Kamenskikh
Russian Federation
Institutskaya str., 3, Pushchino, 142290
A. L. Popov
Russian Federation
Institutskaya str., 3, Pushchino, 142290
O. N. Ermakova
Russian Federation
Institutskaya str., 3, Pushchino, 142290
V. A. Afanasyeva
Russian Federation
Institutskaya str., 3, Pushchino, 142290
V. K. Ivanov
Russian Federation
Leninskiy prosp., 31, Moscow, 119991
References
1. Seminko V., Maksimchuk P., Grygorova G., Okrushko E., Avrunin O., Semenets V., Malyukin Y. Mechanism and Dynamics of Fast Redox Cycling in Cerium Oxide Nanoparticles at High Oxidant Concentration. J. Phys. Chem. C, 2021, 125(8), P. 4743–4749.
2. Malyukin Y., Maksimchuk P., Seminko V., Okrushko E., Spivak N. Limitations of Self-Regenerative Antioxidant Ability of Nanoceria Imposed by Oxygen Diffusion. J. Phys. Chem. C, 2018, 122(28), P. 16406–1641.
3. Wang Z.-Q., Zhang M.-J., Hu X.-B., et al. CeO2−x quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. Chem. Commun., 2020, 56, P. 403–406.
4. Rink, J.C. Stem cell systems and regeneration in planaria. Dev. Genes Evol., 2013, 223, P. 67–84.
5. Reddien P.W., Alvarado A.S. Fundamentals of Planarian Regeneration. Annual Review of Cell and Developmental Biology, 2004, 20, P. 725– 75.
6. Cutie S., Hoang A.T., Payumo A.Y., Huang G.N. Unconventional Functions of Muscles in Planarian Regeneration. Dev. Cell, 2017, 43(6), P. 657–658.
7. Reddien P.W. Specialized progenitors and regeneration. Development, 2013, 140(5), P. 951–957.
8. Pagan O.R. Planaria: an animal model that integrates development, regeneration and pharmacology. ´ Int. J. Dev. Biol., 2017, 61(8-9), P. 519– 529.
9. Ermakov A., Popov A., Ermakova O., et al. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation. Materials Science and Engineering: C, 2019, 104, P. 109924.
10. Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. Cerium dioxide nanoparticles as third-generation enzymes (Nanozymes). Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(6), P. 760–781.
11. Popova N.R., Andreeva V.V., Khohlov N.V., Popov A.L., Ivanov V.K. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(1), P. 99–109.
12. Baldim V., Bedioui F., Mignet N., Margaill I., Berret J.-F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 2018, 10, P. 6971–6980.
13. Singh R., Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids and Surfaces B: Biointerfaces, 2019, 175, P. 625–635.
14. Li Y., Hou X., Yang C. et al. Photoprotection of cerium oxide nanoparticles against UVA radiation-induced senescence of human skin fibroblasts due to their antioxidant properties. Scientific Reports, 2019, 9, P. 2595.
15. Caputo F., De Nicola M., Sienkiewicz A. et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale, 2015, 7, P. 15643–15656.
16. Arya A., Gangwar A., Singh S. K., Bhargava K. Polyethylene glycol functionalized cerium oxide nanoparticle confer protection against UV-induced oxidative damage in skin: evidences for a new class of UV filter. Nano Ex., 2020, 1, P. 010038.
17. Miri A., Birjandi S.A., Sarani M. Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles. J. Biochem. Mol. Toxicol. 2020, 34(6), P. e22475.
18. Yang J., Xu Z.-P., Huang Y. et al. ATM and ATR: Sensing DNA damage. World J Gastroenterol., 2004, 10(2), P. 155–160.
19. Caputo F., Giovanetti A., Corsi F. et al. Cerium oxide nanoparticles re-establish cell integrity checkpoints and apoptosis competence in irradiated HaCat cells via novel redox-independent activity front. Pharmacol, 2018, 9, P. 1183.
20. Popov A. L., Zaichkina S. I., Popova N. R. et al. Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles. RSC Advances, 2016, 6, P. 106141–106149.
21. Briggs A., Corde S., Oktaria S. et al. Cerium oxide nanoparticles: influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9(7), P. 1098–1105.
22. Shinpaugh J.L. et al Protection and sensitization of normal and tumor cells to proton radiation by cerium oxide nanoparticles. J. Phys.: Conf. Ser., 2015, 635, P. 032032.
23. Ermakov A.M., Ermakova O.N., Maevsky E.I. A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma. Biophysics, 2014, 59, P. 453–457.
24. Ivanova O.S., Shekunova T.O., Ivanov V.K. et al. One-step synthesis of colloidal solutions of cerium dioxide for biomedical applications. Doklady Chemistry, 2011, 437(2), P. 103–106.
25. Popov A., Popova, N., Gould D., Shcherbakov A.; Sukhorukov G.; Ivanov V. Ceria nanoparticles-decorated microcapsules as a smart drug delivery/protective system: Protection of encapsulated P. pyralis luciferase. ACS Appl. Mater. Interfaces, 2018, 10(17), P. 14367–14377.
26. Ermakov A.M., Ermakova O.N., Popov A.L., Manokhin A.A., Ivanov V.K. Opposite effects of low intensity light of different wavelengths on the planarian regeneration rate. Journal of Photochemistry and Photobiology, B: Biology, 2020, 202, P. 111714.
27. Ribeiro F.M., de Oliveira M.M., Singh S., Sakthivel T.S., Neal C.J., Seal S., Ueda-Nakamura T., Lautenschlager S., Nakamura C. Ceria Nanoparticles Decrease UVA-Induced Fibroblast Death Through Cell Redox Regulation Leading to Cell Survival, Migration and Proliferation. Front. Bioeng. Biotechnol., 2020, 8, P. 577557.
28. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. Biological, biomedical and pharmaceutical applications of cerium oxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications. Elsevier. Amsterdam. 2020, 402 p.
29. de Freitas L.F., Hamblin M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum. Electron., 2016, 22(3), P. 7000417.
30. Passarell S., Karub T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and nonmitochondrial photoacceptors results in photobiomodulation. Journal of Photochemistry and Photobiology B, 2014, 140, P. 344–358.
31. Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol., 2003, 47(7-8), P. 563–571.
32. Shettigar N., Joshi A., Dalmeida R., Gopalkrishna R., Chakravarthy A., Patnaik S., Mathew M., Palakodeti D., Gulyani A. Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm. Science Advances, 2017, 3(7), P. e1603025.
33. Kaupp B. and Seifert R., Cyclic nucleotide-gated ion channels. Physiol Rev., 2002, 82(3), P. 769–824.
34. Katz B., Payne R., Minke B. TRP Channels in Vision. In: Neurobiology of TRP Channels. CRC Press/Taylor & Francis. Boca Raton, 2017, 347 p.
35. Birkholz T.R., Beane W.S. The planarian TRPA1 homolog mediates extraocular behavioral responses to near ultraviolet light. Journal of Experimental Biology, 2017, 152298.
36. Weng Q. et al., Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun., 2021, 12, P. 1436.
37. Pesaraklou A., Matin M. M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior. Nanomedicine, 2020, 15, P. 17.
Review
For citations:
Ermakov A.M., Kamenskikh K.A., Popov A.L., Ermakova O.N., Afanasyeva V.A., Ivanov V.K. Additive effects of green LED light and cerium oxide nanoparticles on the planarian’s regeneration. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):175-181. https://doi.org/10.17586/2220-8054-2021-12-2-175-181