Сравнительное исследование синтеза и структуры наночастиц оксида меди при использовании различных прекурсоров и анализ возможности применение их в качестве адсорбентов
https://doi.org/10.17586/2220-8054-2021-12-2-188-198
Аннотация
Наночастицы оксида меди были получены пятью золь-гель методами. Сравнительное исследование было выполнено с помощью таких методов, как FTIR, SEMEDX, XRD. На основании анализа результатов выявлено, что пятый метод является более подходящим и дает более точные и правильные результаты. Из данных EDX также установлено, что пятый метод дает более высокие выходы наночастиц оксида меди. Исследована эффективность этих наночастиц в качестве недорогого адсорбента для удаления метиленового синего (МС) из водных растворов. Было изучено влияние различных параметров, таких как количество адсорбента, концентрация красителя, время контакта, рН, температура, на адсорбционную способность и адсорбционное поведение наночастиц в различных условиях. Изучены экспериментальные изотермические данные. Кинетическое исследование адсорбции подчиняется модели псевдопервого порядка. Термодинамические параметры, а именно свободная энергия Гиббса, энтальпия и энтропия, показали, что адсорбция метиленового синего на наночастицах возможна, спонтанна и экзотермична.
Об авторах
. Bahga-SalehИндия
Aurangabad (MS)
Samreen Fatema
Индия
Aurangabad (MS)
Mazhar Farooqui
Индия
Aurangabad (MS)
Shaikh Yusuf
Индия
Kannad (MS)
Список литературы
1. Saja M.J. Synthesis of CuO Nano structure via sol-gel and Precipitation Chemical Methods. Al-Khwarizmi Engineering Journal, 2016, 12 (4), P. 126–131.
2. Hadeel K.T., Kadhim A.H., Ahmed A.A. Synthesis of copper oxide nanoparticles via sol-gel method. Int. Journal of Research in Engineering and Innovation, 2017, 1 (4), P. 43–45.
3. Jeevan J.M., Umesh K.G. Sol-gel Synthesis of Copper, Silver and Nickel Nanoparticles and Comparison of their Antibacterial activity. Int. Journal of Theor. & Appl. Sciences, 2017, 9 (2), P. 151–156.
4. Kankanit P., Sineenart S., Wanichaya M., Wisanu P. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia, 2013, 3 (4), P. 740–745.
5. Rejitha S.G., Krishnanb C. Synthesis of cadmium-doped copper oxide nanoparticles: Optical and structural characterizations. Advances in Applied Science Research, 2013, 4 (2), P. 103–109.
6. Daniel-Umeri R., Osuji F.I., Ezema R.U. Synthesis and Characterization of Copper Oxide Thin Films Using Successive Ionic Layer Adsorption Reaction (SILAR) Method. Chemistry and Materials Research, 2016, 8 (6), P. 68–76.
7. Sanjay S., Mahendra K., Arvind A., Sudhanshu K.D. Synthesis and Characterisation of Copper Oxide nanoparticles. IOSR Journal of Applied Physics (IOSR-JAP), 2013, 5 (4), P. 61–65.
8. Etefagh R., Azhir E., Shahtahmasebi N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica Transactions F: Nanotechnology, 2013, 20 (3), P. 1055–1058.
9. Nithya K., Yuvasree P., et al. Preparation and Characterization of Copper Oxide Nanoparticles. Int. Journal of ChemTech Research, 2014, 6 (3), P. 2220–2222.
10. TranT. H., Nguyen V.T. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications. Int. Scholarly Research Notices, 2014, 856592.
11. Soltanianfard M.J., Firoozadeh A. Synthesis and Characterization of Copper (II)-Oxide Nanoparticles from Two Cu (II) Coordination Polymers. Journal of Sciences, Islamic Republic of Iran, 2016, 27 (2), P. 113–117.
12. Khashan K.S., Jabir M.S., Abdulameer F.A. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid. Journal of Physics: Conf. Series, 2018, 1003, 012100.
13. Manimaran R., Palaniradja K., et al. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl. Nanosci., 2014, 4, P. 163–167.
14. Rejitha S.G., Krishnan C. Synthesis of cadmium-doped copper oxide nanoparticles: Optical and structural characterizations. Advances in Applied Science Research, 2013, 4 (2), P. 103–109.
15. Diachenko O.V., Opanasuyk A.S., et al. Structural Features of Nanostructured Copper Oxide Thin Films, Synthesized by Spray Pyrolysis Technique. Proc. Nap, 2015, 4 (4), P. 1–4.
16. Aparna Y., Enkateswara Rao K.V., Srinivasa Subbarao P. Synthesis and Characterization of CuO Nano Particles by Novel Sol-Gel Method. IPCBEE, 2012, 48.
17. Jagdeep M., Kshirsagar S., Ramakant S., Prakash S.A. Preparation and characterization of copper oxide nanoparticles critical heat flux. Thermal science, 2017, 21 (1A), P. 233–242.
18. Arindam G., Navnita K., Ayon B. Investigations on structural and optical properties of Cu doped ZnO. Journal of NanoScience and NanoTechnology, 2014, 2 (4), P. 485–489.
19. Catherine W.C.L. Synthesis and Characterization of Manganese Dioxide Nanoparticles and Thin Films. A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Science, University Malaysia Sarawak, 2007.
20. Radwan N.R.E., Hagar M., Chaieb K. Adsorption of Crystal Violet Dye on Modified Bentonites. Asian Journal of Chemistry, 2016, 28 (8), P. 1643–1647.
21. Ameeth B.I., Nagalakshmi R., Shanthi T. Removal of congo red and magenta dyes from industrial waste water by thorn apple leaf powder. Int. J. Chem. Sci, 2016, 14 (1), P. 57–64.
22. Subir C., Tapan K.S. Adsorption of Reactive Blue 4 (RB4) onto Rice Husk in Aqueous Solution. Int. Journal of Scientific & Engineering Research, 2016, 7 (3), P. 7–12.
23. Masoud S-R. Mohsen I., et al. Removal, preconcentration and determination of methyl red in water samples using silica coated magnetic nanoparticles. Journal of Applied Research in Water and Wastewater, 2014, 1, P. 6–12.
24. Muhammad N.Z., Qamar D., et al. Effective adsorptive removal of azo dyes over spherical ZnO. JMR&T journal research and technology, 2019, 8 (1), P. 713–725.
25. Maryam N.A., Niyaz M.M., et al. Adsorption of organic dyes using copper oxide nanoparticles: isotherm and kinetic studies. Journal Desalination and Water Treatment, 2016, 57 (52), P. 25278–25287.
26. Oannis A., Ahmad H-B, et al. Use of nanoparticles for dye adsorption: Review. Journal of Dispersion Science and Technology, 2018, 39 (6), P. 836–847.
27. Li L.H., Xiao J., Liu P., Yang G.W. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal. Science Reports, 2015, 5, 9028.
28. Chandrakala M., Anima U. Adsorption Efficiency of Phosphoric Acid Activated Gulmohar (Delonix regia) Fruit Shell Charcoal using Methylene Blue. Int. Journal for Research in Applied Science & Engineering Technology, 2018, 6 (4), P. 480–484.
29. Lotfi M., Lazhar B., et al. Removal of methylene blue from aqueous solutions by adsorption on kaolin: Kinetic and equilibrium studies. Applied clay science, 2018, 153, P. 38–45.
30. Sanchez E., Lapez T. Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materials. Mat. latt., 1995, 25, P. 271–275.
31. Parmvir S., Rishab J., et al. Synthesis of Manganese Oxide NPs Using Similar Process and Different Precursors — A Comparative Study. Nanotech R. J., 2015, 8 (3), P. 419–427.
32. Ismat Z.L., Lutfun N.H., et al. Preparation and Characterization of Copper Oxide NPs Synthesized via Chemical Precipitation Method. Open Access Library Journal, 2015, 2, e1409.
33. Hadeel K.T., Kadhim A.H., Al-Amiery A.A. Synthesis of copper oxide NPs via sol-gel method. IJREI, 2017, 1 (4), P. 43–45.
34. Sanjay S., Mahendra K., Arvind A., Sudhanshu K.D. Synthesis and Characterisation of Copper Oxide NPs. IOSR-JAP, 2013, 5 (4), P. 61–65.
35. Rajesh D., Milind U., Farooqui M., Shantilal R. Adsorption study for the Removal of Hazrdous Dye Congo Red by Biowaste Materials as Adsorbents. IJAIEM, 2016, 5 (11).
36. Anita S.E., Dae J.K. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Ethiraj and Kang Nanoscale Research Letters, 2012, 7, 70.
37. Ensieh S., Nourollah F., Aliakbar D.K. Copper Oxide Nanoparticles Prepared by Solid State Thermal Decomposition: Synthesis and Characterization. Journal of Ultrafine Grained and Nanostructured Materials, 2016, 49 (1), P. 48–50.
38. Kalita C., Karmakar S. Analysis of Structural and Optical Features of CuO Nanoparticles Synthesized at Different Molarities. Int. Journal of Scientific Research in Physics and Applied Sciences, 2018, 6 (2), P. 30–34.
39. Deepak P., Shikha S., Pardeep S. Removal of methylene blue by adsorption ontoactivated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 2017, 10, P. 1445–1451.
40. Soheila H., Marzieh T., Seyed J.S. Removal of crystal violet from water by magnetically modified activated carbon andnanomagnetic iron oxide. Journal of Environmental Health Science & Engineering, 2015, P. 2–7
41. Dattatraya J., Bashir A.D., Farooqui M. Husk of gram seeds as a low-cost adsorbent for the removal of methylene blue dye from aqueous solutions. Journal of enviromental science and water resources, 2013, 2 (7), P. 226–232.
42. Abdo T., Mohd M., Farooqui M., Maqdoom F. Studies on the isotherms, kinetics and thermodynamics of adsorption of crystal violet on low cost materials. Journal of advanced scientific research, 2012, 3 (1), P. 36–44.
43. Jiancheng S., Renlog L.,et al. Adsorption of methylene blue on modified electrolytic manganse residue: Kinetics, isotherm, thermodynamics and mechanism analysis. Journal of Taiwan Inst. of Chem. Eng., 2018, 82, P. 351–359.
44. Jirekar D.B., Ghumare P., Farooqui M. Kinetics and isotherm studies on crystal violet dye adsorption onto black gram seed husk. Int. Journal of Chemtech research, 2015, 7 (1), P. 427–434.
45. Jirekar D.B., Farooqui M. Adsorption of congo red dye from aqueous solution using ecofriendly low cost material prepared from Cicerarientinum. Arab journal of physical chemistry, 2015, 2 (1).
46. Youssef M., Anisa L., et al. Adsorption of methylene blue dye from aqueous solutions onto walnut shell powder: equilibrium and kinetics studies. Surface and interfaces, 2018, 11, P. 74–81.
47. Sanaz M., Dariush B., Hadi S. Methylene blue removal using modified celery (Apium graveolens) as a low cost biosorbent in batch mode: Kinetic, equilibrium and thermodynamic studies. Journal of molecular structure, 2018, 1173, P. 541–551.
Рецензия
Для цитирования:
Bahga-Saleh , Fatema S., Farooqui M., Yusuf Sh. Сравнительное исследование синтеза и структуры наночастиц оксида меди при использовании различных прекурсоров и анализ возможности применение их в качестве адсорбентов. Наносистемы: физика, химия, математика. 2021;12(2):188-198. https://doi.org/10.17586/2220-8054-2021-12-2-188-198
For citation:
Bahga-Saleh , Fatema S., Farooqui M., Yusuf Sh. Comparative study of synthesis and structural by using different precursors of copper oxide nanoparticles and their application in the adsorption capacity. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):188-198. https://doi.org/10.17586/2220-8054-2021-12-2-188-198