On quantum bit coding by Gaussian beam modes for the quantum key distribution
https://doi.org/10.17586/2220-8054-2020-11-6-651-658
Abstract
This paper deals with possibility of implementation of quantum key distribution algorithm through turbulent atmosphere. Beam wandering is considered as the main perturbation. For description of the density matrix, the Glauber–Sudarshan P-function technique is used. The probabilities of detectors triggering are determined.
About the Authors
M. P. FaleevaRussian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
I. Y. Popov
Russian Federation
Kronverkskiy, 49, Saint Petersburg, 197101
References
1. Derkach I., Usenko V.C., Filip R. Squeezing-enhanced quantum key distribution over atmospheric channels. New J. Phys., 2020, 22, P. 053006.
2. Dixon A., et al. High speed prototype quantum key distribution system and long term field trial. Opt. Express, 2015, 23, P. 7583–7592.
3. Choi I., et al. Field trial of a quantum secured 10 gb/s dwdm transmission system over a single installed fiber. Opt. Express, 2014, 22, P. 23121–23128.
4. Frohlich B., et al. Quantum secured gigabit optical access networks.¨ Sci. Rep., 2015, 5, P. 18121.
5. Bohmann M., Semenov A.A., Sperling J., Vogel W. Gaussian entanglement in the turbulent atmosphere. Phys. Rev. A, 2016, 94, P. 010302(R).
6. Andrews L.C., Phillips R.L. Laser beam propagation through random media, SPIE Press, Bellingham, Washingtin, 2005.
7. Vasylyev D.Yu., Semenov A.A., Vogel W. Toward Global Quantum Communication: Beam Wandering Preserves Nonclassicality. Phys. Rev. Lett., 2012, 108, P. 220501.
8. Vasylyev D.Yu., Semenov A.A., Vogel W. Atmospheric Quantum Channels with Weak and Strong Turbulence. Phys. Rev. Lett., 2016, 117, P. 090501.
9. Semenov A.A., Vogel W.Entanglement transfer through the turbulent atmosphere, Phys. Rev. A., 2010, 81, P. 023835.
10. Miroshnichenko G.P., Sotnikova A.A. Optimization of optical fiber parameters to reduce errors of quantum key distribution using entangled polarization states of biphotons. Optics and Spectroscopy, 2012, 112, P. 327–334.
11. Gaidash A.A.,Medmedeva S.S.,Miroshnichenko G.P. Analysis of the unambiguous state discrimination with unequal a priori probabilities. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(4), P. 398–401.
12. Kiselev F.D., Samsonov E.Y., Gleim A.V. Modeling of linear optical controlled-Z quantum gate with dimensional errors of passive components. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(6), P. 627–631.
Supplementary files
|
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(19KB)
|
Indexing metadata ▾ |
Review
For citations:
Faleeva M.P., Popov I.Y. On quantum bit coding by Gaussian beam modes for the quantum key distribution. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6):651–658. https://doi.org/10.17586/2220-8054-2020-11-6-651-658