Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of Ce:YIG nanopowder by gel combustion

https://doi.org/10.17586/2220-8054-2021-12-2-210-217

Abstract

Nanocrystalline Ce-substituted yttrium iron-gallium garnet Y2.5Ce0.5(Fe0.5Ga0.5)5O12 was obtained by a metal-organic gel combustion method using PVA as a fuel with subsequent calcining in vacuum at 700 C. According to SEM and XRD data, an additional heat treatment in air led only to an increase in the crystallinity of the sample. The element composition and the phase purity were confirmed by X-ray fluorescence spectroscopy and X-ray powder diffraction, respectively. Mossbauer spectroscopy on 57Fe nuclei revealed the presence of only Fe3+ ions in the sample, which can be considered as indirect evidence of the absence of tetravalent cerium impurity.

About the Authors

M. N. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, 31 Leninsky Prospect, Moscow



I. S. Glazkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, 31 Leninsky Prospect, Moscow



G. E. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, 31 Leninsky Prospect, Moscow



M. А. Kop’eva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, 31 Leninsky Prospect, Moscow



A. A. Eliseev
Lomonosov Moscow State University
Russian Federation

Department of Chemistry

119234, 1 Leninskie Gory, Moscow



E. A. Gorbachev
Lomonosov Moscow State University
Russian Federation

Department of Chemistry

119234, 1 Leninskie Gory, Moscow



V. A. Ketsko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

119991, 31 Leninsky Prospect, Moscow



References

1. Garskaite E., Gibson K., et al. On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chemical Physics, 2006, 323, P. 204–210.

2. McCloy J.S., Walsh B. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets. IEEE Transactions on Magnetics, 2013, 49 (7), P. 4253– 4256.

3. Park M.B., Cho N.H. Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce:YIG) films prepared by RF magnetron sputter techniques. Journal of Magnetism and Magnetic Materials, 2001, 231, P. 253–264.

4. Shen T., Dai H., Song M. Structure and Magnetic Properties of Ce-Substituted Yttrium Iron Garnet Prepared by Conventional Sintering Techniques. Journal of Superconductivity and Novel Magnetism, 2017, 30, P. 937–941.

5. Huang M., Zhang S. Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications. Applied Physics A, 2002, 74, P. 177–180.

6. Dastjerdi O.D., Shokrollahi H., Yang H. The enhancement of the Ce-solubility limit and saturation magnetization in the Ce0.25BixPryY2.75−x−yFe5O12 garnet synthesized by the conventional ceramic method. Ceramics International, 2020, 46 (315), P. 2709– 2723.

7. Ibrahim N.B., Edwards C., Palmer S.B. Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films. Journal of Magnetism and Magnetic Materials, 2000, 220, P. 183–194.

8. Xu H., Yang H. Magnetic properties of YIG doped with cerium and gadolinium ions. Journal of Materials Science: Mater Electron, 2008, 19, P. 589–593.

9. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32, P. 751–767.

10. Gilleo M.A., Geller S. Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3•xM2O3 • (5 − x)Fe2O3. Physical Review, 1958, 110 (1), P. 73–78.

11. Bokshyts Y.V., Shevchenko G.P., et al. Structure and luminescence properties of (Y1−xLax)3(La1−yGay)O12:Ce+3 . Inorganic Materials, 2019, 55 (8), P. 820–826.

12. Smirnova M.N., Nikiforova G.E., Goeva L.V. One-stage synthesis of (Y0,5Bi0.5)3(Fe0.5Ga0.5)5O12 garnet using the organometallic gel auto-combustion approach. Ceramics international, 2018, 45 (4), P. 4509–4513.

13. Smirnova M.N., Nipan G.D., Nikiforova G.E. (Y1−xBix)3(Fe1−yGay)5O12 Solid Solution Region in the Ieneke Diagram. Inorganic materials, 2018, 54 (7), P. 683–688.

14. Sharm V., Kuanr B.K. Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. Journal of Alloys and Compounds, 2018, 748, P. 591–600.

15. Opuchovic O., Andrulevicius M., et al. Cerium doping and cerium aluminium co-doping effects on the sol-gel processing of Y3Fe5O12 (YIG): Bulk and thin films. Solid State Sciences, 2020, 99, 106065.

16. Kum J.S., Kim S.J., Shim I.B., Kim C.S. Magnetic properties of Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method. Journal of Magnetism and Magnetic Materials, 2004, 272, P. 2227–2229.

17. Popova V.F., Petrosyan A.G., et al. Y2O3-Ga2O3 phase diagram. Russian Journal of Inorganic Chemistry, 2009, 54, P. 624–629.

18. Lomanova N.A., Tomkovich M.V., et al. Formation of Bi1−xCaxFeO3−δ Nanocrystals via Glycine-Nitrate Combustion. Russian Journal of General Chemistry, 2019, 89 (9), P. 1843–1850.

19. Almjasheva O.V., Lomanova N.A., et al. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics Chemistry Mathematics, 2019, 10 (4), P. 428–437.

20. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels. Journal of Magnetism and Magnetic Materials, 2016, 397, P. 86–95.

21. Zhuravlev V.D., Khaliullin S.M., Ermakova L.V., Bamburov V.G. Synthesis and Properties of Manganese Oxides Obtained via Combustion Reactions with Glycine and Citric Acid. Russian Journal of Inorganic Chemistry, 2020, 65, P. 1522–1528.

22. Nguyen A.T., Tran H.L.T., et al. Sol-gel synthesis and the investigation of the properties of nanocrystalline holmium orthoferrite. Nanosystems: Physics Chemistry Mathematics, 2020, 11 (6), P. 698–704.

23. Matsnev M.E., Rusakov V.S. SpectrRelax: An Application for Mossbauer Spectra Modeling and Fitting. ¨ AIP Conference Proceedings, 2012, 1489, P. 178–185.

24. Nakatsuka A., Yoshiasa A., Takeno S. Site preference of cations and structural variation in Y3Fe5−xGaxO12 (0 ≤ x ≤ 5) solid solutions with garnet structure. Acta Crystallographica Section B, 1995, 51, P. 737–745.

25. Sifat R., Beam J.C., Grosvenor A.P. Investigation of Factors That Affect the Oxidation State of Ce in the Garnet-Type Structure. Inorganic Chemistry, 2019, 58 (4), P. 2299–2306.

26. Nicholson W.J., Bums G. Quadrupole Coupling Constant, eq/Qh, of Fe3+ in Several Rare-Earth Iron Garnets. Physical Review A, 1964, 133, 1568.

27. Sawatzky G.A., van der Woude F., Morrish A.H. Recoilless-Fraction ratios for Fe57 in octahe dral and tetrahedral sites of a spinel and a garnet. Physical Review, 1969, 183, P. 383–386.

28. Belogurov V.N., Bilinkin V.A. Dependence of the dynamic and hyperfine characteristics of Fe3+ ions on the rare-earth ion parameters in garnets above the Neel temperature. ´ Physica Status Solidi, 1981, 63, P. 45–53.


Review

For citations:


Smirnova M.N., Glazkova I.S., Nikiforova G.E., Kop’eva M.А., Eliseev A.A., Gorbachev E.A., Ketsko V.A. Synthesis of Ce:YIG nanopowder by gel combustion. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):210-217. https://doi.org/10.17586/2220-8054-2021-12-2-210-217

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)