Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Study of stability of luminescence intensity of β-NaGdF4:Yb:Er nanoparticle colloids in aqueous solution

https://doi.org/10.17586/2220-8054-2021-12-2-218-223

Abstract

Hexagonal modification e—NaGdF4:Yb:Er with a particle size of 24 nm was synthesized by the solvothermal technique. Concentrated aqueous colloids of nanoparticles were prepared using polyvinylpyrrolidone as the surfactant. The study of the luminescence characteristics for 25 days revealed that the luminescence intensity did not significantly change and hydrolysis of nanoparticles was not observed.

About the Authors

I. D. Kormshchikov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Moscow State University
Russian Federation

Faculty of Chemistry, Moscow State University

Vavilov str, 38, Moscow, 119991 ,

Moscow, 119991 



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Vavilov str, 38, Moscow, 119991



S. A. Burikov
Moscow State University
Russian Federation

Faculty of Physics

Moscow, 119991 



T. А. Dolenko
Moscow State University
Russian Federation

Faculty of Physics

Moscow, 119991 



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Vavilov str, 38, Moscow, 119991



References

1. Wolfbeis O.S. An overwiew of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44, P. 4743–4768.

2. Fei X., Gu Y. Progress in modifications and applications of fluorescent dye probe. Progress in Natural Science, 2009, 19, P. 1–7.

3. Fan J.Y., Chu P.K. Group IV Nanoparticles: Synthesis, properties, and biological applications. Small, 2010, 6, P. 2080–2098.

4. Khan W.U., Wang D., Wang Y. Highly Green Emissive Nitrogen-Doped Carbon Dots with Excellent Thermal Stability for Bioimaging and Solid-State LED. Inorganic Chemistry, 2018, 57, P. 15229–15239.

5. Molaei M.J. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 2019, 9, P. 6460–6481.

6. Rosenholm J.M., Vlasov I.I., Burikov S.A., Dolenko T.A., Shenderova O.A. Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery (Review). J. of Nanoscience and Nanotechnology, 2015, 15, P. 959–971.

7. Sarmanova O.E., Burikov S.A., Dolenko S.A., Isaev I.V., Laptinskiy K.A., Prabhakar N., Karaman D.S., Rosenholm J.M., Shenderova O.A., Dolenko T.A. A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, P. 1371–1380.

8. Rodr´ıguez-Sevilla P., Sanz-Rodr´ıguez F., Pelaez R.P., Delgado-Buscalioni R., Liang Liangliang, Liu Xiaogang, Jaque Daniel. Single-cell ´ diagnosis by upconverting nanorockers. Advanced Biosystems, 2019, 3, P. e1900082.

9. Wua Wei, Wanga Xian, Tiana Yuexing, Wanga Shasha, Deab Gejihu. Controlled synthesis and luminescent properties of Ca0.80Yb0.20F2.2: 0.2% Tm3+ nanocrystals. J. Fluor.Chem., 2021, 242, P. 109696.

10. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nanofluorides and ceramics for optical and laser applications. Chapter in the book Photonic and Electronic Properties of Fluoride Materials. Ed. A.Tressaud, K. Poeppelmeier, Print Book, 2016, P. 7-31.

11. Reig David Saleta, Grauel Bettina, Konyushkin V.A., Nakladov A.N., Fedorov Pavel P., Busko Dmitry, Howard Ian Arthur, Richards Bryce S., Resch-Genger Ute, Kuznetsov Sergey, Turshatov Andrey, Wurth Christian. Upconversion properties of SrF ¨ 2:Yb3+,Er3+ single crystals. J. Mater. Chem. C., 2020, 8, P. 4093–4101.

12. Ermakova Yu.A., Pominova D.V., Voronov V.V., Kuznetsov S.V. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates. J. Fluor. Chem., 2020, 237, P. 109607.

13. Pominova D.V., Romanishkin I.D., Proydakova V.Yu., Grachev P.V., Moskalev A.S., Ryabova A.V., Makarov V.I., Linkov K.G., Kuznetsov S.V., Uvarov O.V., Loschenov V.B. Comparison of 920, 940 and 970 nm wavelengths in terms of penetration depth and thermal effects on biological tissues as well as up-conversion luminescence excitation efficiency. Methods Appl. Fluoresc., 2020, 8, P. 025006.

14. Liu W., Chen R., He S. Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity. Journal of Innovative Optical Health Sciences, 2019, 12, P. 1950013.

15. Brites C.D.S., Balabhadra S., Carlos L.D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater., 2019, P. 71801239.

16. Jaque D., Vetrone F. Luminescence nanothermometry. Nanoscale, 2012, 4, P. 4301–4326.

17. Brites C.D.S., Kuznetsov S.V., Konyushkin V.A., Nakladov A.N., Fedorov P.P., Carlos L.D. Simultaneous measurement of the emission quantum yield and local temperature: the illustrative example of SrF2:Yb3+/Er3+ single crystals. Eur. J. Inorg. Chem., 2020, 2020, P. 1555– 1561.

18. Sarmanova O.E., Burikov S.A., Laptinskiy K.A., Kotova O.D., Filippova E.A., Dolenko T.A. In vitro temperature sensing with up-conversion NaYF4:Yb3+/Tm3+-based nanocomposites: peculiarities and pitfalls. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, P. 118627(8 p).

19. Sevilla Paloma Rodr´ıguez, Rodriguez Francisco Sanz, Pelez Raul P., Buscalioni Rafael Delgado, Liang Liangliang, Liu Xiaogang, Jaque ´ Daniel. Upconverting Nanorockers for Intracellular Viscosity Measurements During Chemotherapy. Advanced in Biosystems, 2019, 3, P. 1900082.

20. Kaiser M., Wurth C., Kraft M., Hyppanen I., Soukka T., Resch-Genger U., Nanoscale, 2017, 9, P. 10051–10058.

21. Etchart I., Huignard A., Berard M., Nordin M.N., Hernandez I., Curry R.J., Gillin W.P., Cheetham A.K. J. Mater. Chem., 2010, 20, P. 3989- 3994.

22. Pokhrel M., Kumar G.A., Sardar D.K. J. Mater. Chem. A, 2013, 1, P. 11595–11606.

23. Yu Songxia, Wang Zhiqiang, Cao Ruijun, Meng Lingjie. Microwave–assisted synthesis of water–disperse and biocompatible NaGdF4:Yb,Ln@NaGdF4 nanocrystals for UCL/CT/MR multimodal imaging. J. Fluor. Chem., 2017, 200, P. 77–83.

24. Lyberis A., Patriarche G., Gredin P., Vivien D., Mortier M. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J. Eur. Ceram. Soc., 2011, 31, P. 1619–1630.

25. Warf J.C., Cline W.C., Tevebaugh R.D. Pyrohydrolysis in Determination of Fluoride and Other Halides. Analytical Chemistry, 1954, 26, P. 342–346.

26. Banks C.V., Burke K.E., O‘Laughlin J.W. The determination of fluorine in rare-earth fluorides by high temperature hydrolysis. Analytica Chimica Acta, 1958, 19, P. 230–243.

27. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Osiko V.V., Ermakov R.P., Gontar’ I.V., Timofeev A.A., Iskhakova L.D. Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects. Nanotechnologies in Russia, 2011, 6, P. 203–210.

28. Dukhno O., Przybilla F., Muhr V., Buchner M., Hirsch T., Mely Y. Time-dependent luminescence loss of individual upconversion nanoparticles upon dilution in aqueous solutions. Nanoscale, 2018, 10, P. 15904–15910.

29. Andresen E., Wurth C., Prinz C., Michaelis M., Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and ¨ dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale, 2020, 12, P. 12589–12601.

30. Li Zhengquan, Zhang Yong. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology, 2008, 19, P. 345606.

31. Shannon R.D. Revised effective ionic radii and systematic studies of interaction distance in halides and chalcogenides. Acta Crystallogr. A, 1976, 32, P. 751–767.

32. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented aggregation of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev., 2014, 83, P. 1204–1222.


Review

For citations:


Kormshchikov I.D., Voronov V.V., Burikov S.A., Dolenko T.А., Kuznetsov S.V. Study of stability of luminescence intensity of β-NaGdF4:Yb:Er nanoparticle colloids in aqueous solution. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):218-223. https://doi.org/10.17586/2220-8054-2021-12-2-218-223

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)