Влияние температуры соосаждения на размер кристаллитов и агрегацию/агломерацию наночастиц GdFeO3
https://doi.org/10.17586/2220-8054-2021-12-2-224-231
Аннотация
В данной работе серия нанопорошков GdFeO3 была успешно синтезирована методом обратного соосаждения при различных температурах раствора (0, 25 и 50 °С) с последующей термической обработкой. Соосажденные гидроксиды и продукты термообработки анализировали методами РСМА, ДТА-ТГА, ПРД, АСА и ЛД. Показано, что температура образования наночастиц GdFeO3 колеблется в пределах 737.5–758.8 °С, а общая потеря массы колеблется в пределах 23.6–26.4 % в зависимости от температуры исходных растворов. Установлено, что удельная поверхность нанопорошков сильно зависит от упомянутого выше фактора и находится в интервале значений 2.5–16.3 м2/г. Установлена иерархическая структура полученных нанопорошков и подробно обсуждено влияние температуры соосаждения на средние размеры кристаллитов (21.4–34.3 нм), агрегатов (46.2–301.2 нм) и агломератов (33.5–40.9 мкм).
Об авторах
V. I. PopkovРоссия
Saint Petersburg, 194021
Y. Albadi
Россия
Saint Petersburg, 190013;
Homs, 77, Syrian Arab Republic
Список литературы
1. Tretyakov Y.D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russian Chemical Reviews, 2004, 73(9), P. 831–846.
2. Storozhenko P.A., Guseinov S.L., Malashin S.I. Nanodispersed powders: Synthesis methods and practical applications. Nanotechnologies in Russia, 2009, 4(5-6), P. 262–274.
3. Kuznetsov S.V., Osiko V.V., Tkatchenko E.A., Fedorov P.P. Inorganic nanofluorides and related nanocomposites. Russian Chemical Reviews, 2006, 75(12), P. 1065–1082.
4. Sadovnikov S.I., Gusev A.I., Rempel A.A. Nanostructured lead sulfide: synthesis, structure and properties. Russian Chemical Reviews, 2016, 85(7), P. 731–758.
5. Bukhtiyarova M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry, 2019, 269(June 2018), P. 494–506.
6. Pinkas J., Reichlova V., Serafimidisova A., Moravec Z., Zboril R., Jancik D., Bezdicka P. Sonochemical Synthesis of Amorphous Yttrium Iron Oxides Embedded in Acetate Matrix and their Controlled Thermal Crystallization toward Garnet (Y3Fe5O12) and Perovskite (YFeO3) Nanostructures. The Journal of Physical Chemistry C, 2010, 114(32), P. 13557–13564.
7. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russian Journal of Inorganic Chemistry, 2007, 52(11), P. 1648–1656.
8. Popkov V.I., Almjasheva O.V. Formation Mechanism of YFeO3 Nanoparticles under the Hydrothermal Conditions. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 703–708.
9. Tugova E.A., Karpov O.N. Nanocrystalline perovskite-like oxides formation in Ln2O3-Fe2O3-H2O (Ln = La, Gd) systems. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(6), P. 854–860.
10. Popkov V.I., Almjasheva O.V., Schmidt M.P., Gusarov V. V. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russian Journal of General Chemistry, 2015, 85(6), P. 1370–1375.
11. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. Russian Chemical Reviews, 2020, 89 (6), P. 629–666.
12. Albadi Y., Sirotkin A.A., Semenov V.G., Abiev R.S., Popkov V.I. Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor. Russian Chemical Bulletin, 2020, 69(7), P. 1290–1295.
13. Rempel A.A. Nanotechnologies . Properties and applications of nanostructured materials. Russian Chemical Reviews, 2007, 76(5), P. 435–461.
14. Nikam A.V., Prasad B.L.V., Kulkarni A.A. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 2018, 20(35), P. 5091–5107.
15. Albadi Y., Martinson K.D., Shvidchenko A.V., Buryanenko I.V., Semenov V.G., Popkov V.I. Synthesis of GdFeO3 nanoparticles via lowtemperature reverse co-precipitation: the effect of strong agglomeration on the magnetic behavior. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(2), P. 252–259.
16. Ivanova O.S., Teplonogova M.A., Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. Hydrothermal Microwave Synthesis of MnO2 in the Presence of Melamine: The Role of Temperature and pH. Russian Journal of Inorganic Chemistry, 2018, 63(6), P. 708–713.
17. Nguyen A., Nguyen N., Mittova I., Perov N., Mittova V., Hoang T., Nguyen V., Nguyen V., Pham V., Bui X. Crystal structure, optical and magnetic properties of PrFeO3 nanoparticles prepared by modified co-precipitation method. Processing and Application of Ceramics, 2020, 14(4), P. 355–361.
18. Tien N.A., Mittova I.Y., Almjasheva O.V., Kirillova S.A., Gusarov V.V. Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. Glass Physics and Chemistry, 2008, 34(6), P. 756–761.
19. Tien N.A., Mittova I.Y., Almjasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russian Journal of Applied Chemistry, 2009, 82(11), P. 1915–1918.
20. Xu H., Hu X., Zhang L. Generalized Low-Temperature Synthesis of Nanocrystalline Rare-Earth Orthoferrites LnFeO3 (Ln = La, Pr, Nd, Sm, Eu, Gd). Crystal Growth and Design, 2008, 8(7), P. 2061–2065.
21. Popkov V.I., Tugova E.A., Bachina A.K., Almjasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russian Journal of General Chemistry, 2017, 87(11), P. 2516–2524.
22. Li L., Wang X., Lan Y., Gu W., Zhang S. Synthesis, Photocatalytic and Electrocatalytic Activities of Wormlike GdFeO3 Nanoparticles by a Glycol-Assisted Sol–Gel Process. Industrial and Engineering Chemistry Research, 2013, 52(26), P. 9130–9136.
23. Li L., Wang X. Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles. Journal of Sol-Gel Science and Technology, 2016, 79(1), P. 107–113.
24. Kryuchkova T.A., Sheshko T.F., Kost’ V.V., Chislova I.V., Yafarova L.V., Zvereva I.A., Lyadov A.S. Dry Reforming of Methane over GdFeO3- Based Catalysts. Petroleum Chemistry, 2020, 60(9), P. 1052–1058.
25. Li X., Duan Z.-Q. Synthesis of GdFeO3 microspheres assembled by nanoparticles as magnetically recoverable and visible-light-driven photocatalysts. Materials Letters, 2012, 89, P. 262–265.
26. Deka S., Saxena V., Hasan A., Chandra P., Pandey L.M. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Materials Science and Engineering: C, 2018, 92, P. 932–941.
27. Pinho S.L.C., Amaral J.S., Wattiaux A., Duttine M., Delville M.-H., Geraldes C.F.G.C. Synthesis and Characterization of Rare-Earth Orthoferrite LnFeO3 Nanoparticles for Bioimaging. European Journal of Inorganic Chemistry, 2018, 2018(31), P. 3570–3578.
28. Tugova E.A., Zvereva I.A. Formation Mechanism of GdFeO3 Nanoparticles under the Hydrothermal Conditions. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(6), P. 851–856.
29. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 2014, 83(12), P. 1204–1222.
30. Yam C.H., Lee C.H., Siu Y.S., Ho K.M., Li P. Synthesis of dual stimuli-responsive amphiphilic particles through controlled semi-batch emulsion polymerization. Polymer (Guildf), 2016, 106, P. 294–302.
Рецензия
Для цитирования:
Popkov V.I., Albadi Y. Влияние температуры соосаждения на размер кристаллитов и агрегацию/агломерацию наночастиц GdFeO3. Наносистемы: физика, химия, математика. 2021;12(2):224-231. https://doi.org/10.17586/2220-8054-2021-12-2-224-231
For citation:
Popkov V.I., Albadi Y. The effect of co-precipitation temperature on the crystallite size and aggregation/agglomeration of GdFeO3 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):224-231. https://doi.org/10.17586/2220-8054-2021-12-2-224-231