Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Синтез наноструктурированных композиционных материалов MoO3/TiO2–SiO2 сферической формы, приготовленных на основе смол

https://doi.org/10.17586/2220-8054-2021-12-2-232-245

Аннотация

Целью работы являлся синтез наноструктурированных композитов MoO3/TiO2–SiO2 полой сферической формы путем термического разложения анионообменников, насыщенных ионами Mo7O6-24 и обработанных золем ТБТ–ТЭОС. Показано влияние кинетики (метод Киссинджера и Метцгера-Горовица) термического разложения смол пористой и гелевой структур на размер наночастиц MoO3 и прочность сфер MoO3/TiO2–SiO2. Образованию плотных сферических наноструктурированных агломератов композита способствуют реакции, протекающие на границе раздела фаз цилиндрической и сферической симметрии при использовании анионообменной смолы с пористой структурой. Реакции разложения анионообменной смолы гелевой структуры, сопровождающиеся случайным зародышеобразованием, приводят к образованию полых сферических агломератов композита с трещинами на поверхности. Материалы были охарактеризованы методами ДСК-ТГА, РФА и СЭМ.

Об авторах

S. A. Kuznetsova
National Research Tomsk State University
Россия

Lenin, 36, Tomsk, 634050 



A. S. Khalipova
National Research Tomsk State University
Россия

Lenin, 36, Tomsk, 634050 



K. V. Lisitsa
National Research Tomsk State University
Россия

Lenin, 36, Tomsk, 634050 



А. А. Ditts
National Research Tomsk Polytechnic University
Россия

Lenin, 30, Tomsk, 634050 



А. G. Malchik
National Research Tomsk Polytechnic University
Россия

Lenin, 30, Tomsk, 634050 



V. V. Kozik
National Research Tomsk State University
Россия

Lenin, 36, Tomsk, 634050 



Список литературы

1. Li W.Z., Qin C.G., Xiao W.M., Sheng J. Preparation of hollow layered MoO3 microspheres through a resin template approach. J. Solid State Chem, 2005, 178, P. 390–394.

2. Vladimirova E.V., Gyrdasova O.I., Dmitriev A.V. Synthesis of nanostructured hollow microspheres of vanadium (III, V) oxides. Nanosystems: physics, chemistry, mathematics, 2020, 11(5), P. 572–577.

3. Wang M.L., Wang C.H., Wang W. Porous macrobeads composed of metal oxide nanocrystallites and with percolated porosity. J. Mater. Chem., 2007, 17, P. 2133–2138.

4. Wang M.L., Wang, C.H. Wang W. Preparation of porous ZrO2/Al2O3 macrobeads from ion-exchange resin templates. J. Mater. Sci., 2011, 46, P. 1220–1227.

5. Kuznetsova S.A., Brichkov A.S., Lisitsa K.V., Shamsutdinova A.N., Kozik V.V. Preparation and Properties of MoO3–TiO2–SiO2 Composites with Spherical Shape of Agglomerates. Russ. J. Appl. Chem., 2019, 92, P. 171–180.

6. Rogacheva A., Shamsutdinova A., Brichkov A., Larina T., Paukshtis E., Kozik V. Synthesis and Properties of Spherical Catalysts TiO2- SiO2/MxOy (M=Co and Cr). AIP Conf. Proc., 2017, 1899, P. 020007.

7. Rogacheva A.O., Buzaev A.A., Brichkov A.S., Khalipova O.S., Klestov S.A., Paukshtis E.A., Kozik V.V. Catalytically active composite material based on TiO2/Cr2O3 hollow spherical particles. Kinet. Catal., 2019, 60(4), P. 484–489.

8. Chandra P., Doke D.S., Umbarkara S.B., Birada A.V. One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: an efficient epoxidation catalyst. J. Mater. Chem. A., 2(44), 2014, P. 219060–19066.

9. Ion exchange method for preparing metal oxide microspheres. Patent. 3438749 USA, Lonadier F.D., Brown W.B., Fushimi F.C., Silver G.L., p. 3.

10. Apblett A.W., Kuriyavar S.I., Kiran B.P. Preparation of micron-sized spherical porous iron oxide particles. J. Mater. Chem., 2003, 13, P. 983– 985.

11. Castro I.A.D., Datta R.S., Ou J.Z., Gomez A.C., Sriram S., Daeneke T., Zadeh K.K. Molybdenum oxides from fundamentals to functionality. Adv. Mater., 2017, 29, P. 1701619.

12. Santos-Beltran M., Paraguay-Delgado F., Garc´ıa R., Ant ´ unez-Flores W., Ornelas-Guti ´ errez C., Beltr ´ an A.S. Fast methylene blue removal by ´ MoO3 nanoparticles. J. Mater. Sci: Mater. Electron., 2017, 28, P. 2935–2948.

13. Liu K., Huang X., Pidko E.A., Emiel J.M. MoO3–TiO2 synergy in oxidative dehydrogenation of lactic acid to pyruvic acid, Green Chem., 2017, 19, P. 3014–3022.

14. Li C.J., Tseng C.M., Lai S.N., Yang C.R., Hung W.H. Photocatalytic activities enhanced by Au-plasmonic nanoparticles on TiO2 nanotube photoelectrode coated with MoO3. Nanoscale Res. Lett., 2017, 12, P. 560–566.

15. Wang X., Cui W., Chen M., Xu Q. Supercritical CO2-assisted phase transformation from orthorhombic to hexagonal MoO3. Mater. Lett., 2017, 201, P. 129–132.

16. Bian L., Wang S.P., Ma X.B. The effect of catalyst preparation on the activity of MoO3-SiO2 catalyst in transesterification of diethyl oxalate. Kinet. Catal., 2014, 55, P. 763–769.

17. Kozik V.V., Brichkov A.S., Shamsutdinova A.N., Paukshtis E.A., Brichkova V.Y., Parmon V.N., Ivanov V.K. Stabilization of TiO2–Co3O4 thin films on a glass fiber material by introduction of silica into the matrix. Dokl. Phys. Chem., 2016, 470, P. 154–157.

18. Li Y., Yu H., Huang X., Wu Z., Xu H. Improved performance for polymer solar cells using CTAB-modified MoO3 as an anode buffer layer. Sol. Energy Mater. Sol. Cells, 2017, 171, P. 72–84.

19. Kociołek-Balawejder E., Stanisławska E., Mucha I. Freeze dried and thermally dried anion exchanger doped with iron(III)(hydr)oxide – Thermogravimetric studies. Thermochim. Acta, 2019, 680, P. 178359–178370.

20. Kalistratova V.V., Rodin A.V., Emel’yanov A.S., Vidanov V.L., Milyutin V.V., Belova E.V., Shmidt O.V., Myasoedov B.F. Kinetics of thermal degradation of VP-1AP anion-exchange resin in the nitrate form. Radiochem., 2018, 60, P. 287–293.

21. Ostroushko A.A., Mogil’nikov Yu.V., Ostroushko I.P. Synthesis of molybdenum- and vanadium-containing mixed oxides in polymer-salt systems. Inorganic Materials, 2000, 36(12), P. 1256-1263.

22. Ostroushko A.A., Mogil’Nikov Yu.V., Popov K.A. Thermal destruction of polymer-salt compositions containing d-metals in the form of oxygen-bearing anions. Inorganic Materials, 2000, 36(6), P. 603–611.

23. Bogdanov S.G., Ostroushko A.A., Valiev E.Z., Pirogov A.N., Teplykh A.E. Effect of acidity of polymer-salt composition on the formation mechanism of the tungsten and molybdenum oxide partiles. J. of Surf. Investig.: X-Ray, Synchrotron and Neutron Techniques, 2011, 5(4), P. 21–32.

24. Shamsutdinova A.N., Brichkov A.S., Paukshtis E.A., Larina T.V., Cherepanova S.V., Glazneva T.S., Kozik V.V. Composite TiO2/fiberglass catalyst: Synthesis and characterization. Catal. Commun., 2017, 89, P. 64–68.

25. Brichkov A.S., Shamsutdinova A.N., Khalipova O.S., Rogacheva A.O., Larina T.V., Cherepanova S.V., Glazneva T.S., Paukshtis E.A., Buzaev A.A., Kozik V.V., Chen Y.-W. Preparation of a fiberglass-supported Ni-Si-Ti oxide catalyst for oxidation of hydrocarbons: effect of SiO2. J. Chem. Technol. Biotechnol., 2019, 94, P. 3618–3624.

26. Leykin Y.A., Meychik N.R., Solovyov V.K. Acid-base equilibrium of polyamfolitov with pyridine and phosphate groups. Russian J. Phys. Chem., 1978, 52, P. 1420–1424.

27. Busev A.I. Analytical Chemistry of Molybdenum. Ann Arbor-Humphrey Science Publishers, Moscow, 1969, 253 p.

28. Kissinger H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Bur. Standards, 1956, 57, P. 217– 221.

29. Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., 1958, 29, P. 1702–1706.

30. Zeng W., Zhou H., Chen Q., Chen X. Kinetics of thermal decomposition of synthetic gibbsite. Transactions of Nonferrous Metals Society of China, 1993, 3(2), P. 41–44.

31. Yin Z., Li X., Chen Q. Study on the kinetics of the thermal decomposition of ammonium molybdates. Thermochim. Acta., 2000, 352–353, P. 107–110.

32. Gul S., Shah A.A., Bilal S. Calculation of activation energy of degradation of polyaniline-dodecylbenzene sulfonic acid salts via TGA. J. Sci. Innovative Research, 2013, 2, P. 673–684.

33. Satava V., ˇ Skvara Fr. Mechanism and kinetics of the decomposition of solids by a thermogravimetric method. ˇ J. Am. Ceram. Soc., 1969, 52, P. 591–595.

34. Bortolotti M., Lonardelli I. ReX. Cell: a user-friendly program for powder diffraction indexing. J. Appl. Cryst., 2013, 46, P. 259–261.

35. Boultif A., Louer D. Powder pattern indexing with the dichotomy method. ¨ J. Appl. Cryst., 2004, 37, P. 724–731.

36. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, 44, P. 1272–1276.

37. Crystallography Open Database: www.crystallography.net.


Рецензия

Для цитирования:


Kuznetsova S.A., Khalipova A.S., Lisitsa K.V., Ditts А.А., Malchik А.G., Kozik V.V. Синтез наноструктурированных композиционных материалов MoO3/TiO2–SiO2 сферической формы, приготовленных на основе смол. Наносистемы: физика, химия, математика. 2021;12(2):232-245. https://doi.org/10.17586/2220-8054-2021-12-2-232-245

For citation:


Kuznetsova S.A., Khalipova O.S., Lisitsa K.V., Ditts А.А., Malchik A.G., Kozik V.V. Synthesis of nanostructured composite materials of MoO3/TiO2–SiO2 with spherical shape prepared with resins. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):232-245. https://doi.org/10.17586/2220-8054-2021-12-2-232-245

Просмотров: 98


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)