Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

High performance tandem perovskite-silicon solar cells with very large bandgap photoelectrodes

https://doi.org/10.17586/2220-8054-2021-12-2-246-251

Abstract

Nanostructured layers of metal oxides with very large bandgaps (Eg > 5 eV), such as ZrO2 and HfO2, were used as photoelectrodes in semitrans­parent perovskite solar cells (PSCs) with the device architecture of glass/FTO/c-TiO2/ZrO2 (or HfO2)/CH3NH3PbI3/PTAA/PEDOT:PSS/FTO/glass. The obtained PSCs were used as top elements for manufacturing high-performance four-terminal tandem perovskite-silicon solar cells. The com­parative analysis of photovoltaic parameters measured for PSCs, crystalline silicon (c-Si) solar cells and tandem PSC/c-Si solar cells demonstrated that the application of very large-bandgap materials allows to improve the PSC performance and to increase the efficiency of tandem PSC/c-Si solar cell up to ~24% in comparison with a standalone c-Si solar cell.

About the Authors

A. B. Nikolskaia
Institute of Biochemical Physics RAS
Russian Federation

Department of Solar Photovoltaics

Kosygin St. 4, Moscow, 119334



M. F. Vildanova
Institute of Biochemical Physics RAS
Russian Federation

Department of Solar Photovoltaics

Kosygin St. 4, Moscow, 119334



S. S. Kozlov
Institute of Biochemical Physics RAS
Russian Federation

Department of Solar Photovoltaics

Kosygin St. 4, Moscow, 119334



O. V. Almjasheva
Saint Petersburg Electrotechnical University “LETI
Russian Federation

Saint-Petersburg, Professora Popova St., 5, Saint Petersburg, 19737



V. V. Gusarov
Saint Petersburg Electrotechnical University “LETI”; Ioffe Physical-Technical Institute RAS
Russian Federation

Saint-Petersburg, Professora Popova St., 5, Saint Petersburg, 197376,

Politekhnicheskaya St., 26, Saint Petersburg, 194021



O. I. Shevaleevskiy
Institute of Biochemical Physics RAS
Russian Federation

Department of Solar Photovoltaics

Kosygin St. 4, Moscow, 119334



References

1. Green M.A., Dunlop E.D., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X. Solar cell efficiency tables (version 56). Prog. Photovolt.: Res. Appl., 2020, 28, NREL/JA-5900-77544.

2. Battaglia C., Cuevas A., De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci., 2016, 9, P. 1552–1576.

3. Yu Z., Leilaeioun M., Holman Z. Selecting tandem partners for silicon solar cells. Nat. Energy, 2016, 1, P. 16137.

4. Leijtens T., Bush K.A., Prasanna R., McGehee M.D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy, 2018, 3, P. 828–838.

5. Park N.G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater., 2020, 10(13), P. 1903106.

6. Tejeda A., Choy W.C.H., Deleporte E., Graetzel M. Hybrid perovskites for photovoltaics and optoelectronics. J. Phys. D: Appl. Phys., 2020, 53(7), P. 070201.

7. Ansari M.I.H., Qurashi A., Nazeeruddin M.K. Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J. Photochem. Photobiol. C: Photochem. Rev., 2018, 35, P. 1–24.

8. Jiang Y., Almansouri I., Huang S., Young T., Li Y., Peng Y., Hou Q., Spiccia L., Bach U., Cheng Y., Greena M.A., Ho-Baillie A. Optical analysis of perovskite/silicon tandem solar cells. J. Mater. Chem. C, 2016, 4, P. 5679–5689.

9. Messmer C., Goraya B.S., Nold S., Schulze P.S., Sittinger V., Schon J., Goldschmidt J.C., Bivour M., Glunz S.W., Hermle M. The race ¨ for the best silicon bottom cell: efficiency and cost evaluation of perovskite–silicon tandem solar cells. Prog. Photovolt.: Res. Appl., 2020, https://doi.org/10.1002/pip.3372.

10. Dewi H.A., Wang H., Li J., Thway M., Sridharan R., Stangl R., Lin F., Aberle A.G., Mathews N., Bruno A., Mhaisalkar S. Highly efficient semitransparent perovskite solar cells for four terminal perovskite-silicon tandems. ACS Appl. Mater. Interfaces, 2019, 11(37), P. 34178– 34187.

11. Chen B., Zheng X., Bai Y., Padture N.P., Huang J. Progress in tandem solar cells based on hybrid organic–inorganic perovskite. Adv. Energy Mater., 2017, 7, P. 1602400.

12. Jaysankar M., Filipic M., Zielinski B., Schmager R., Song W., Qiu W., Paetzold U.W., Aernouts T., Debucquoy M., Gehlhaar R., Poortmans J. Perovskite–silicon tandem solar modules with optimized light harvesting. Energ. Environ. Sci., 2018, 11, P. 1489–1498.

13. Loper P., Moon S.-J., de Nicolas S.M., Niesen B., Ledinsky M., Nicolay S., Bailat J., Yum J.-H., De Wolf S., Ballif C. Organic–inorganic ¨ halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys., 2015, 17, P. 1619–1629.

14. Noh M.F.M., Teh C.H., Daik R., Lim E.L., Yap C.C., Ibrahim M.A., Ludin N.A., Yusoff A.R., Jange J., Teridi M.A.M. The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C, 2018, 6, P. 682–712.

15. Wang K., Olthof S., Subhani W.S., Jiang X., Cao Y., Duan L., Wang H., Du M., Liu S. Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective. Nano Energy, 2020, 68, P. 104289.

16. Mahmood K., Sarwar S., Mehran M.T. Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv., 2017, 7, P. 17044–17062.

17. Larina L.L., Alexeeva O.V., Almjasheva O.V., Gusarov V.V., Kozlov S.S., Nikolskaia A.B., Vildanova M.F., Shevaleevskiy O.I. Very widebandgap nanostructured metal oxide materials for perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 70– 75.

18. Vildanova M.F., Nikolskaia A.B., Kozlov S.S., Shevaleevskiy O.I. Charge transfer mechanisms in multistructured photoelectrodes for perovskite solar cells. J. Phys.: Conf. Ser., 2020, 1697, P. 012187.

19. Heo H., Han H.J., Lee M., Song M., Kim D.H., Im S.H. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energ. Environ. Sci., 2015, 8(10), P. 2922.

20. Chen B., Bai Y., Yu Z., Li T., Zheng X., Dong Q., Shen L., Boccard M., Gruverman A., Holman Z., Huang J. Efficient semitransparent perovskite solar cells for 23.0% efficiency perovskite/silicon four terminal tandem cells. Adv. Energy Mat., 2016, 6(19), P. 1601128.

21. Vildanova M.F., Nikolskaia A.B., Kozlov S.S., Karyagina O.K., Larina L.L., Shevaleevskiy O.I., Almjasheva O.V., Gusarov V.V. Nanostructured ZrO2–Y2O3-based system for perovskite solar cells. Doklady Physical Chemistry, 2019, 484(2), P. 36–38.

22. Nikolskaia A., Vildanova M., Kozlov S., Tsvetkov N., Larina L., Shevaleevskiy O. Charge transfer in mixed phase TiO2 photoelectrodes for perovskite solar cells. Sustainability, 2020, 12, P. 788.

23. Ito S., Chen P., Comte P., Nazeeruddin M.K., Liska P., Pechy P., Gr ´ atzel M. Fabrication of screen-printing pastes from TiO ¨ 2 powders for dye?sensitized solar cells. Prog. Photovolt.: Res. Appl., 2007, 15, P. 603–612.

24. Nikolskaia A.B., Kozlov S.S., Vildanova M.F., Shevaleevskiy O.I. Power conversion efficiencies of perovskite and dye-sensitized solar cells under various solar radiation intensities. Semiconductors, 2019, 53(4), P. 540–544.

25. Ahn N., Son D.-Y., Jang I.-H., Kang S.M., Choi M., Park N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (II) iodide. J. Am. Chem. Soc., 2015, 137(27), P. 8696–8699.


Review

For citations:


Nikolskaia A.B., Vildanova M.F., Kozlov S.S., Almjasheva O.V., Gusarov V.V., Shevaleevskiy O.I. High performance tandem perovskite-silicon solar cells with very large bandgap photoelectrodes. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(2):246-251. https://doi.org/10.17586/2220-8054-2021-12-2-246-251

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)