Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Physicochemical and biochemical properties of the Keplerate-type nanocluster polyoxomolybdates as promising components for biomedical use

https://doi.org/10.17586/2220-8054-2021-12-1-81-112

Abstract

The paper discusses the results of a research on physicochemical and biochemical properties of the Keplerate-type molybdenum-based nanocluster polyoxometalates (POMs), which show promise in the field of biomedicine as a means of targeted drug delivery, including the transport to immune privileged organs. POMs can be considered as components of releasing systems, including the long-acting ones with feedback (for controlling the drug active component release rate). POMs are promising drugs for the treatment of anemia. Also, the paper deals with the results of studies of POM effect on living systems at the molecular and cellular levels, at that of individual organs, and on the organism as a whole. The mechanism and kinetics of POM destruction and possibilities of stabilization, the oscillatory phenomena manifestation, the formation of POM conjugates with bioactive substances which can be released during the destruction of POM, with polymer components, and with indicator fluorescent dyes, as well as forecasts for further research, are considered.

About the Authors

A. A. Ostroushko
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ekaterinburg



K. V. Grzhegorzhevskii
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ekaterinburg



S. Yu. Medvedeva
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



I. F. Gette
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



M. O. Tonkushina
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ekaterinburg



I. D. Gagarin
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Ekaterinburg



I. G. Danilova
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. Gregoriadis G., Swain C.P., Wills E.J., Tavill A.S. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet, 1974, 1, P. 1313–1316.

2. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, P. 145–160.

3. Johnston M.J., Semple S.C., Klimuk S.K., Ansell S., Maurer N., Cullis P.R. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta, 2007, 1768, P. 1121–1127.

4. Fenske D.B., Cullis C.A. Liposomal Nanomedicines: An Emerging Field. Toxicologic Pathology, 2008, 36, P. 21–29.

5. Raney S.G., Wilson K.D., Sekirov L., Chikh G., de Jong S.D., Cullis P.R., Tam Y.K. The effect of circulation lifetime and drug-to-lipid ratio of intravenously administered lipid nanoparticles on the biodistribution and immunostimulatory activity of encapsulated CpG-ODN. J. Drug. Target, 2008, 16(7), P. 564–77.

6. Fenske D.B., Cullis P.R. Liposomal Nanomedicines. Expert Opin. Drug. Deliv., 2008, 5(1), P. 25–44.

7. Farokhzad O.C., Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano, 2009, 3(1), P. 16–20.

8. Takahama H., Minamino T., Asanuma H. Fujita M., Asai T., Wakeno M., Sasaki H., Kikuchi H., Hashimoto K., Oku N., Asakura M., Kim J., Takashima S., Komamura K., Sugimachi M., Mochizuki N., Kitakaze M. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection in rats. J. Amer. College of Cardiology, 2009, 53(8), P. 709–717.

9. Chen Y., Bose A., Bothun G.D. Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating. ACS Nano, 2010, 4(6), P. 3215–3221.

10. Parashar A.K., Kakde D., Chadhar V., Devaliya R, Shrivastav V., Jai U.K. A review on Solid Lipid Nanoparticles (SLN) for controlled and targeted delivery of medicinal agents. Curr. Res. Pharm. Sci., 2011, 1(2), P. 367–47.

11. Anwekar H., Patel S., Singhai A.K. Liposomes as drug carriers. Int. J. Pharm. Life Sci. (IJPLS), 2011, 2(7), P. 945–951.

12. Tam Y.C., Chen S., Cullis P.R. Advances in Lipid Nanoparticles for siRNA Delivery. Pharmaceutic, 2013, 5, P. 498–507.

13. Akbarzadeh A., Rezaei-Sadabady R., Nejati K. Liposome: classification, preparation, and Applications. Nanoscale Research Letters, 2013, 8(1), P. 102–111.

14. Smyslov R.Yu., Ezdakova K.V., Kopitsa G.P., Khripunov A.K., Bugrov A.N., Tkachenko A.A., Angelov B., Pipich V., Szekely N.K., Baranchikov A.E., Latysheva E., Chetverikov Yu.O., Haramus V. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials. J. Phys.: Conf. Ser., 2017, 848(1), P. 012017.

15. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 391–396.

16. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.Ye., Ivanov V.K. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(6), P. 760–781.

17. Shydlovska O., Kharchenko E., Zholobak N., Shcherbakov A., Marynin A., Ivanova O., Baranchikov A., Ivanov V. Cerium oxide nanoparticles increase the cytotoxicity of TNF alpha in vitro. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(4), P. 537–543.

18. Almjasheva O.V., Smirnov A.V., Fedorov B.A., Tomkovich M.V., Gusarov V.V. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84(5), P. 804–809.

19. Popov A.L., Savintseva I.V., Mysina E.A., Shcherbakov A.B., Popova N.R., Ivanova O.S., Kolmanovich D.D., Ivanov V.K. Cytotoxicity analysis of gadolinium doped cerium oxide nanoparticles on human mesenchymal stem cells. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 430–438.

20. Vardanyan Z., Gevorkyan V., Ananyan M., Vardapetyan H., Trchounian A. Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton coupled membrane transport. J. Nanobiotechnol, 2015, 13(69), P. 2–9.

21. Popov A.L., Ermakov A.M., Shekunova T.O., Shcherbakov A.B., Ermakova O.N., Ivanova O.S., Popova N.R., Baranchikov A.Ye., Ivanov V.K. PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via induction of intracellular oxidative stress. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 92–101.

22. Sharker S.Md., Kim S.M., Lee J.E., Choi K.H., Shin G., Lee S., Lee D.K., Jeong J., Park S.Y. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217, P. 211–220.

23. Zhou Z., Kong B., Yu C., Shi X., Wang M., Liu W., Sun Y., Zhang Y., Yang H., Yang S. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep., 2014, 4, P. 3653–3663.

24. Xing Y., Li L., Ai X., Fu L. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. Intern. J. Nanomed., 2016, 11, P. 4327–4338.

25. Slowing I.I. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), P. 1278–1288.

26. Kroto H.W., Heath J.R., O’Brien S.C., Curl, R.F. C60: Buckminsterfullerene. Nature, 1985, 318, P. 162–163.

27. Mendes R.G., Bachmatiuk A., Buchner B., Cuniberti G., Rummeli M.H. Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B, 2013, 1(4), P. 401–428.

28. Mo K., Jiang T., Sun W., Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomater., 2015, 50, P. 67–74.

29. Thabitha P., Shareena D., McShan D., Dasmahapatra A.K., Tchounwou P.B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett., 2018, 10(53), P. 1-34.

30. Ren L., Zhang Y., Cui C., Bi Y., Ge X. Functionalized graphene oxide for anti-VEGF siRNA delivery: preparation, characterization and evaluation in vitro and in vivo. RSC Adv., 2017, 7, P. 20553–20566.

31. Jakubek L.M., Marangoudakis S., Raingo J., Liu X., Lipscombe D., Hurt R.H. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomater., 2009, 30, P. 6351–6357.

32. Bianco A., Kostarelos K., Partidos C.D., Prato M. Biomedical applications of functionalized carbon nanotubes. Chem. Commun. (Cambridge, UK), 2005, 5, P. 571–577.

33. Singh R., Pantarotto D., McCarthy D. Binding and condensation of plasmid DNA onto functionalized carbon nano-tubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127, P. 4388–4396.

34. Mahmood M., Karmakar A., Fejleh A., Mocan T., Iancu C., Mocan L., Iancu D.T., Xu Y., Dervishi E., Li Z., Biris A.R., Agarwal R., Ali N., Galanzha E.I., Biris A.S., Zharov V.P. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and antitumor drug. Nanomed., (London), 2009, 4, P. 883–893.

35. Liu Z., Fan A.C., Rakhra K., Sherlock S., Goodwin A., Chen X., Yang Q., Felsher D.W., Dai H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl., 2009, 41(48), P. 7668–7672.

36. Pastorin G., Wu W., Wieckwski S., Briand J.P., Kostarelos K., Prato M. Bianco A. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun., 2006, 11, P. 1182–1184.

37. Kateb B., Yamamoto V., Alizadeh D., Zhang L., Manohara H.M., Bronikowski M.J., Badie B. Multi-walled carbon nanotube (MWCNT) synthesis, preperetion, labeling, and functionalization. Immunotherapy of Cancer, Methods in Molecular Biology, 2010, 651, P. 307–317.

38. Garcia B.O., Kharissova O.V., et al. Nanocomposites with antibacterial properties using CNTs with magnetic nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 161–168.

39. Foldvari M., Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed., 2008, 4(3), P. 183–200.

40. Cai D., Mataraza J.M., Qin Z.H., Huang Z., Huang J., Chiles T.C., Carnahan D., Kempa K., Ren Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods, 2005, 2, P. 449–454.

41. Turcheniuk K., Mochalin V.N. Biomedical Applications of Nanodiamond (Review). Nanotechnology, 2017, 28, P. 252001–252027.

42. Rosenholm J.M., Vlasov I.I., Burikov S.A., Dolenko T.A., Shenderova O.A. Nanodiamond Based Composite Structures for Biomedical Imaging and Drug Delivery (Review). J. Nanosci. Nanotechnol., 2015, 15, P. 959–971.

43. Kulvelis Y.V., Shvidchenko A.V., Aleksenskii A.E., Yudina E.B., Lebedev V.T., Shestakov M.S., Dideikin A.T., Khozyaeva L.O., Kuklin A.I., Gy T., Rulev M.I., Vul A.Y. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly (vinylpyrrolidone). Diamond and Related Mater., 2018, 87, P. 78–89.

44. Girard H., Pager V., Simic V., Arnault J.C. Peptide nucleic acid nanodiamonds: Covalent and stable conjugates for DNA targeting. RSC Adv., 2014, 4, P. 3566–3572.

45. Bokarev A.N., Plastun I.L. Possibility of drug delivery due to hydrogen bonds formation in nanodiamonds and doxorubicin: molecular modeling. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3), P. 370–377.

46. Giammarco J., Mochalin V.N., Haeckel J., Gogotsi Y. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci., 2016, 468, P. 253–261.

47. Schimke M., Steinmüller-Nethl D., Kern J., Krüger A., Lepperdinger G. Biofunctionalization of nano-scaled diamond particles for use in bone healing and tissue engineering. Experimental Gerontology, 2015, 68, P. 100.

48. Chen M., Pierstorff E.D., Li Sh-Y., Robert Lam R., Huang H., Eiji Osawa E., Dean Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ASC Nano, 2009, 7(3), P. 2012–2022.

49. Solomatin A.S., Yakovlev R.Yu., Efremenkova O.V., Sumarukova I.G., Kulakova I.I., Lisichkin G.V. Antibacterial activity of Amikacin immobilized detonation nanodiamond. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(4), P. 531–534.

50. Vul A.Y., Dideikin A.T., Alexenskii A.E., Baidakova M.V. Detonation nanodiamonds: Synthesis, Properties and Applications. Chapter 2. In: Nanodiamond. Ed. Williams O.A. Published by the Royal Society of Chemistry, Cambridge, 2014, P. 27–48.

51. Bondar’ V.S., Puzyr’ A.P. Nanodiamonds for Biological Investigations. Physics of the Solid State, 2004, 46(4), P. 716–719.

52. Krysanov E.Yu., Demidova T.B., Ivanova O.S., Ordzhonikidze K.G., Shcherbakov A.B., Ivanov V.K. Synergetic action of ceria nanoparticles and doxorubicin on the early development of two fish species, Danio rerio and Puntius tetrazona. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(3), P. 289–302.

53. Semenov K.N., Andrusenko E.V., Charykov N.A., Litasova E.V., Panova G.G., Penkova A.V., Murin I.V., Piotrovskiy L.B. Carboxylated Fullerenes: Physico-Chemical Properties and Potential Applications. Prog. Solid State Chem., 2017, 47-48, P. 19–36.

54. Tyurin D.P., Kolmogorov F.S., Cherepkova I.A., Charykov N.A., Semenov K.N., Keskinov V.A., Safyannikov N.M., Pukharenko Y.V., Letenko D.G., Segeda T.A., Shaimardanov Z. Antioxidant properties of fullerenol-d. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(6), P. 798–810.

55. Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A., Kurilenko A.V., Cherepcova I.A., Tyurin D.P., Klepikov V.V., Matuzenko M.Y., Kulenova N.A., Zolotarev A.A. Cryometry data in the binary systems bisadduct of C60 and indispensable aminoacids – lysine, threonine, oxyproline. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 46–48.

56. Dubinina I.A., Kuzmina E.M., Dudnik A.I., Vnukova N.G., Churilov G.N., Samoylova N.A. Study of antioxidant activity of fullerenols by inhibition of adrenaline autoxidation. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 153–157.

57. Shultz M.D., Duchamp J.C., Wilson J.D., Shu C.Y., Ge J., Zhang J., Gibson H.W., Fillmore H.L. Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3−x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform. J. Amer. Chem. Soc., 2010, 132(14), P. 4980–4981.

58. Bolskar R.D. Gadofullerene MRI contrast agents. Nanomedicine (Lond.), 2008, 3(2), P. 201–213.

59. Lebedev V.T., Kulvelis Yu.V., Runov V.V., Szhogina A.A., Suyasova M.V. Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 22–29.

60. Kuchma E., Zolotukhin P., Belanova A., Soldatov M., Lastovina T., Kubrin S., Nikolsky A., Mirmikova L., Soldatov A. Low Toxic Maghemite Nanoparticles for Theranostic Applications. International Journal of Nanomedicine, 2017, 12, P. 6365–6371.

61. Lojk J., Bregar V.B., Strojan K., Hudoklin S., Veranič P., Pavlin M., Kreft M.E. Increased Endocytosis of Magnetic Nanoparticles into Cancerous Urothelial Cells versus Normal Urothelial Cells. Histochemistry and Cell Biology, 2018, 149(1), P. 45–59.

62. Firouzi M., Poursalehi R., Delavari H., Saba F., Oghabian M.A. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography. Int. J. Biol. Macromol., 2017, 98, P. 479–485.

63. Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J. Drug delivery to the brain using surfactant-coated poly (lactideco-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm., 2010, 74, P. 157–163.

64. Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-basedtheranostic agents. Nanosyst. Phys. Chem. Math., 2017, 8(2), P. 282–289.

65. Venkatesan H., Radhakrishnan S., Parthibavarman M., Kumar R.D., Sekar C. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Talanta, 2011, 85(4), P. 2166–2174.

66. Mornet S., Vasseur S., Grasset F., Duguet E. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy. Journal of Materials Chemistry, 2004, 14(14), P. 2161–2175.

67. Garanina A.S., Kireev I.I., Alieva I.B., Majouga A.G., Davydov V.A., Murugesan S., Khabashesku V.N., Agafonov V.N., Uzbekov R.E. New superparamagnetic fluorescent Fe@C-C5ON2H10-Alexa Fluor 647 nanoparticles for biological applications. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(1), P. 120–122

68. Alieva I., Kireev I., Rakhmanina A., Garanina A., Strelkova O., Zhironkina O., Cherepaninets V., Davydov V., Khabashesku V., Agafonov V., Uzbekov R. Magnetinduced behavior of iron carbide (Fe7C3@C) nanoparticles in the cytoplasm of living cells. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 158–160.

69. Koulikova M., Kochubey V.I. Synthesis and Optical Properties of Iron Oxide Nanoparticles for Photodynamic Therapy. Reports of Samara Scientific Center of Russian Academy of Sciences (RAS), 2012, 14(4), P. 206–209.

70. Dykman L.A., Khlebtsov N.G. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae, 2011, 3(2), P. 34–55.

71. Preethika R.K., Ramya R., Ganesan M., Nagaraj S., Pandian K. Synthesis and characterization of neomycin functionalized chitosan stabilized silver nanoparticles and study its antimicrobial activity. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 759–764.

72. Akbarzadeh A., Mohammad Samiei M., Soodabeh Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7, P. 144–157.

73. Tartaj P., Morales M.D.D., Veintemillas-Verdaguer S., Gonzalez-Carreno T., Serna C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys., 2003, 36, P. R182–R197.

74. Ghadiri M., Vasheghani-Farahani E., Atyabi F., Kobarfard F., Mohamadyar-Toupkanlou F., Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105A(10), P. 2851– 2864.

75. MacBain S.C., Yiu H.H., Dobson J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed., 2008, 3(2), P. 169–180.

76. Akbarzadeh A., Zarghami N., Mikaeili H., Asgari D., Goganian A.M., Khiabani H.K., Samiei M., Davaran S. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol. Sci. Appl., 2012, 5, P. 13–25.

77. Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 2012, 112, P. 5818–5878.

78. Kayal S., Ramanujan R.V. Anti-cancer drug loaded iron – gold core – shell nanoparticles (Fe@Au) for magnetic drug targeting. J. Nanosci. Nanotechnol., 2010, 10, P. 5527–5539.

79. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Materials Science and Engineering C, 2016, 68, P. 406–413.

80. Goldt A.E., Polyakov A.Yu., Sorkina T.A., Dubov A.L., Davidova G.A., Selezneva I.I., Maximov Y.V., Presnyakov I.A., Polyakova N.Yu., Goodilin E.A., Perminova I.V. Humic acid-stabilized superparamagnetic maghemite nanoparticles: surface charge and embryotoxicity evaluation. Nanosystems: Physics, Chemistry, Mathematics, 2019, 11(3), P. 184–189.

81. Popov A.L., Popova N., Gould D.J., Shcherbakov A.B., Sukhorukov G.B., Ivanov V.K. Ceria Nanoparticles-Decorated Microcapsules as a Smart Drug Delivery/Protective System: Protection of Encapsulated P. pyralis Luciferase. ACS Appl. Mater. Interfaces, 2018, 10, P. 14367– 14377.

82. Popov A.L., Popova N.R., Tarakina N.V., Ivanova O.S., Ermakov A.M., Ivanov V.K., Sukhorukov G.B. Intracellular Delivery of Antioxidant CeO2 Nanoparticles via Polyelectrolyte Microcapsules. ACS Biomater. Sci. Eng., 2018, 4, P. 2453–2462.

83. Popov A.L., Popova N., Gould D.J., Shcherbakov A.B., Sukhorukov G.B., Ivanov V.K. Ceria Nanoparticles-Decorated Microcapsules as a Smart Drug Delivery/Protective System: Protection of Encapsulated P. pyralis Luciferase. ACS Appl. Mater. Interfaces, 2018, 10, P. 14367– 14377.

84. Pope M.T., Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chem., Int. Ed. Engl., 1991, 30, P. 34–48.

85. Pope M.T. Heteropoly and Isopoly Oxometalates. New York: Springer Verlag, 1983, 180 pp.

86. Proust A. Functionalized Polyoxometalates. Polyoxometalate Molecular Science, 2003, 98, P. 233–252.

87. Gouzerh P., Che M. From Scheele and Berzelius to Müller Polyoxometalates (POMs) revisited and the “missing link” between the bottom up and top down approaches. L’actualité chimique. Recherche et de´veloppement, 2006, 298, P. 1–14.

88. Müller A., Krickemeyer E., Meyer J., Bögge H., Peters F., Plass W., Diemann E., Dillinger S., Nonnenbruch F., Randerath M, Menke C. [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: A Water Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000. Angew. Chem. Int. Ed., 1995, 34(19), P. 2122–2124.

89. Liu T., Diemann E., M?üller A. Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical “Blue Waters”. J. Chemical Education, 2007, 84(3), P. 526–532.

90. Müller A., Maiti R., Schmidtmann M., Bögge H., Samar K.D., Zhang W. Mimicking oxide surfaces: different types of defects and ligand coordination at well defined positions of a molybdenum oxide based nanocluster. Chem. Commun., 2001, P. 2126–2127.

91. Zhu Y., Cammers-Goodwin A., Zhao B., Dozier A., Dickey E.C. Kinetic precipitation of solution-phase polyoxomolybdate followed by transmission electron microscopy: A window to solution-phase nanostructure. Chem. Eur. J., 2004, 10, P. 2421–2427.

92. Müller A., Krickemeyer E., Bögge H., Schmidtmann M., Peters F. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angewandte Chemie International Edition, 1998, 37(24), P. 3359–3363.

93. Müller A., Gouzerh P. From Linking of Metal-Oxide Building Blocks in a Dynamic Library to Giant Clusters with Unique Properties and towards Adaptive Chemistry. Chemical Society Reviews, 2012, 41(22), P. 7431–7463.

94. Ostroushko A.A., Korotaev V.Yu., Tonkushina M.O., Vazhenin V.A., Artemov M.Yu., Men’shikov S.Yu., Kutyashev I.B. Spectroscopic studies of molybdenum polyoxometallates with the buckyball structure and polymer-containing compositions based thereon. Russ. J. Inorg. Chem., 2011, 56(2), P. 276–281.

95. Müller A., Diemann E., Shah S. Q. N., Kuhlmann C., Letzel M.C. Soccer-Playing Metal Oxide Giant Spheres: A First Step Towards Patterning Structurally Well Defined Nano-Object Collectives. Chem. Commun., 2002, P. 440–441.

96. Müller A., Polarz S., Das S.K., Krickemeyer E., Bögge H., Schmidtmann M., Hauptfleisch B. “Open and shut” for guests in molybdenum oxide-based giant spheres, baskets, and rings containing the pentagon as a common structural element. Angew. Chem. Int. Ed., 1999, 38(21), P. 3241–3245.

97. Müller A., Botar B., Das S.K., Bögge H., Schmidtmann M., Merca A. On the complex hedgehog-shaped cluster species containing 368 Mo atoms: simple preparation method, new spectral details and information about the unique formation. Polyhedron, 2004, 23(15), P. 2381–2385.

98. Hall N. Bringing Inorganic Chemistry to Life. Chem. Commun. (The Royal Society of Chemistry), 2003, 7, P. 803–806.

99. Müller A., Sarkar S., Shah S.Q.N., Bögge H., Schmidtmann M., Sarkar S., Kögerler P., Hauptfleisch B., Trautwein V.X., Schünemann V. Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem. Int. Ed. Engl., 1999, 38(21), P. 3238–3241.

100. Liu T., Imber B., Diemann E., Liu G., Cokleski K., Li H., Chen Z., M?üller A. Deprotonations and Charges of Well-Defined Mo72Fe30 Nanoacids Simply Stepwise Tuned by pH Allow Control/Variation of Related Self-Assembly Processes. Journal of the American Chemical Society, 2006, 128(49), P. 15914–15920.

101. Besson C., Schmitz S., Capella K.M., Kopilevich S., Weinstock I.A., Kögerler P. A regioselective Huisgen reaction inside a Keplerate polyoxomolybdate nanoreactor. Dalton Trans., 2012, 41(33), P. 9852–9854.

102. Henry M., Bögge H., Diemann E., Müller A. Chameleon water: assemblies confined in nanocapsules. J. Mol. Liq., 2005, 118(1-3), P. 155– 162.

103. Müller A., Gouzerh P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem. Soc. Rev., 2012, 41(22), P. 7431–7463.

104. Popa A.M., Hu L., Crespy D., Henry M., Rene M., Rossi R.M. Polyoxomolybdate-based selective membranes for chemical protection. J. Membrane Science, 2011, 373(1-2), P. 196–201.

105. Ostroushko A.A., Sennikov M.Yu., Tonkushina M.O. Interaction of Polyoxometalate Mo132 with Poly(vinyl alcohol). Russ. J. Inorg. Chem., 2009, 54(4), P. 617–623.

106. Ostroushko A.A., Tonkushina M.O., Korotaev V.Yu., Prokof’eva A.V., Kutyashev I.B., Vazhenin V.A., Danilova I.G., Men’shikov S.Yu. Stability of the Mo72Fe30 Polyoxometalate Buckyball in Solution. Russ. J. Inorg. Chem., 2012, 57(9), P. 1210–1213.

107. Ostroushko A.A., Tonkushina M.O., Martynova N.A. Mass and charge transfer in systems containing nanocluster molybdenum polyoxometallates with a fullerene structure. Russ. J. Phys. Chem. A, 2010, 84(6), P. 1022–1027.

108. Ostroushko A.A., Gagarin I.D., Tonkushina M.O., Grzhegorzhevskii K.V., Gette I.F., Medvedeva S.Yu., Mukhlynina E.A., Ulitko M.V., Danilova I.G. Promissing Means of Targeted Delivery of Medical Product on the Basis of Nanocluster Polyoxometalates // XX Mendeleev Congress on general and applied chemistry. Five volumes book. Vol. 4: abstracts. – Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016. P. 511.

109. Grzhegorzhevskii K., Ostroushko A., Koriakova O., Ovchinnikova I., Kim G. Photoinduced charge transfer in the supramolecular structure based on toroid polyoxomolibdate Mo138 and xanthene dye - Rhodamine-B. Inorganica Chim. Acta, 2015, 436, P. 205–213.

110. Grzhegorzhevskii K.V., Adamova L.V., Eremina E.V., Ostroushko A.A. On the Possibility of Controlling the Hydrophilic/Hydrophobic Characteristics of Toroid Mo138 Nanocluster Polyoxometalates. Russ. J. Phys. Chem. A, 2017, 91(3), P. 561–568.

111. Grzhegorzhevskii K.V., Ostroushko A.A. Supramolecular Structural Design in a System Based on Nanocluster Mo138 and a Cationic Surfactant: Influence of Components Ratio and pH of the Solutions. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 2015, 480, P. 130–137.

112. Ostroushko A.A., Fedorova O.V., Titova Yu.A., Vigorov K.V., Grzhegorzhevskii K.V. Enantioselective Catalytic Effect of Soft Thermal Decomposition Products of Iron-Molybdenum Polyoxometalat. Proceedings of the 3rd All-Russian Conference with International Participation on Advances of Synthesis and Complex Formation, Moscow, Russia, April 21-25, 2014, (RUDN, Moscow, 2014), 2, P. 207.

113. Ostroushko A.A., Fedorova O.V., Titova Yu.A., Grzhegorzhevskii K.V. Iron-Molybdenum Polyoxometalat: Enantioselective Catalytic Activity of Soft Thermal Decomposition Products. Proceedings of the 2nd Russian Congress on Catalysis ROSKATALIZ, Samara, October 2-5, 2014, Ed. by V.N. Parmon and A.S. Noskov, Inst. Kataliza Boreskova, Sib. Otdel. RAN, Novosibirsk, 2014, 2, P. 75.

114. Michelis F.V., Delitheos A., Tiligada E. Molybdate modulates mitogen and cyclosporin responses of human peripheral blood lymphocytes. Journal of Trace Elements in Medicine and Biology, 2011, 25, P. 138–142.

115. Yamase T. Polyoxometalates for Molecular Devices: Antitumor Activity and Luminescence. Molecular Engineering, 1993, 3(1-3), P. 241– 262.

116. Yamase T., Fujita H., Fukushima K. Medical Chemistry of Polyoxometalates. Part 1. Potent Antitumor Activity of Polyoxomolybdates on Animal Transplantable Tumors and Human Cancer Xenograft. Inorganica Chimica Acta, 1988, 151(1), P. 15–18.

117. Merca A., Haupt E.T.K., Mitra T., Bögge H., Rehder D., Müller A. Mimicking biological cation-transport based on sphere-surface supramolecular chemistry: Simultaneous interaction of porous capsules with molecular plugs and passing cations. Chemistry – a European Journal, 2007, 13(27), P. 7650–7658.

118. Ziv A., Grego A., Kopilevich S., Zeiri L., Miro P., Bo C., Müller A., Weinstock I.A. Flexible Pores of a Metal Oxide-Based Capsule Permit Entry of Comparatively Larger Organic Guests. J. Am. Chem. Soc., 2009, 131(18), P. 6380–6382.

119. Rubcic M., Korenev V.S., Toma L., Bögge H., Fedin V.P., Müller A. Molecular recognition of Ca2+ cations by internal and external receptors/interfaces in a spherical porous molybdenum-oxide capsule: unusual coordination scenarios Inorganic Chemistry Frontiers, 2014, 1(10), P. 740–744.

120. Watfa N., Melgar D., Haouas M., Taulelle F., Hijazi A., Naoufal D., Avalos J.B., Floquet S., Bo C., Cadot E. Hydrophobic Effect as a Driving Force for Host-Guest Chemistry of a Multi-Receptor Keplerate-Type Capsule J. Am. Chem. Soc., 2015, 137(17), P. 5845–5851.

121. Elistratova J., Akhmadeev B., Korenev V., Sokolov M., Nizameev I., Gubaidullin A., Voloshina A., Mustafina A. Self-assembly of Gd3+- bound keplerate polyanions into nanoparticles as a route for the synthesis of positive MRI contrast agents. Impact of the structure on the magnetic relaxivity. Soft Matter., 2018, 14(38), P. 7916–7925.

122. Elistratova J., Akhmadeev B., Korenev V., Sokolov M., Nizameev I., Ismaev I., Kadirov M., Sapunova A., Voloshina A., Amirov R., Mustafina A. Aqueous solutions of triblock copolymers used as the media affecting the magnetic relaxation properties of gadolinium ions trapped by metal-oxide nanostructures. Journal of Molecular Liquids, 2019, 296, P. 111821.

123. Pizzanelli S., Zairov R., Sokolov M., Mascherpa M.C., Akhmadeev B., Mustafina A., Calucci L. Trapping of Gd(III) Ions by Keplerate Polyanionic Nanocapsules in Water: A 1H Fast Field Cycling NMR Relaxometry Study. J. Phys. Chem. C, 2019, 123(29), P. 18095–18102.

124. Yin P., Li D., Liu T. Counterion Interaction and Association in Metal-Oxide. Cluster Macranionic Solutions and the Consequent Self-Assembly. Isr. J. Chem., 2011, 51, P. 191–204.

125. Yang H.-K., Cheng Y.-X., Su M.-M., Xiao Y., Hu M.-B., Wang W., Wang Q. Polyoxometalate-biomolecule Conjugates: A New Approach to Create Hybrid Drugs for Cancer Therapeutics. Bioorganic & Medicinal Chemistry Letters, 2013, 23(5), P. 1462–1466.

126. Awada M., Floquet S., Marrot J., Haouas M., Morcillo S.P., Bour Ch., Gandon V., Coeffard V., Greck Ch., Cadot E. Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands. J. Clust. Sci., 2017, 28(2), P. 799–812.

127. Ostroushko A.A., Adamova L.V., Eremina E.V., Grzhegorzhevskii K.V. Interaction between nanocluster polyoxometallates and low-molecular-weight organic compounds. Russ. J. Phys. Chem. A, 2015, 89(8), P. 1439–1444.

128. Tonkushina M.O., Gagarin I.D., Grzhegorzhevskii K.V., Ostroushko A.A. Electrophoretic Transfer of Nanocluster Polyoxometalate Mo72Fe30 Associates through the Skin Membrane. Bulletin of Ural Medical Academic Science, 2014, 3(49), P. 59–61.

129. Ostroushko A.A., Grzhegorzhevskii K.V. Electric Conductivity of Nanocluster Polyoxomolybdates in the Solid State and Solutions. Russ. J. Phys. Chem. A, 2014, 88(6), P. 1008–1011.

130. Ostroushko A.A., Gette I.F., Danilova I.G., Mukhlynina E.A., Tonkushina M.O., Grzhegorzhevskii K.V. Studies on the Possibility of Introducing Iron-Molybdenum Buckyballs into an Organism by Electrophoresis. Nanotechnologies in Russia, 2014, 9(9-10), P. 586–591.

131. Ostroushko A.A., Danilova I.G., Gette I.F., Tonkushina M.O., Behavior of Associates of Keplerate-Type Porous Spherical Mo72Fe30 Clusters with Metal Cations in Electric Field-Driven Ion Transport. Russ. J. Inorg. Chem., 2015, 60(4), P. 500–504.

132. Ostroushko A.A., Danilova I.G., Gette I.F., Medvedeva S.Yu., Tonkushina M.O., Prokofieva A.V., Morozova M.V. Study of Safety of Molybdenum and Iron-Molybdenum Nanocluster Polyoxometalates Intended for Targeted Delivery of Drugs. Journal of Biomaterials and Nanobiotechnology, 2011, 2(5), P. 557–560.

133. Ostroushko A.A., Gette I.F., Medvedeva S.Y., Danilova I.G., Mukhlynina E.A., Tonkushina M.O., Morozova M.V. Study of Acute and Subacute Action of Iron-Molybdenum Nanocluster Polyoxometalates. Nanotechnologies in Russia, 2013, 8(9-10), P. 672–677.

134. Gette I.F., Medvedeva S.Yu., Ostroushko A.A. Condition of the Immune System Organs and Blood Leucocytes in Rats after the Exposition of Iron-Molybdenum Polyoxometalates. Russian J. of Immunology, 2017, 11(2), P. 280–282.

135. Ostroushko A.A., Tonkushina M.O. Destruction of Molybdenum Nanocluster Polyoxometallates in Aqueous Solutions. Russ. J. Phys. Chem. A, 2015, 89(3), P. 443–446.

136. Ostroushko A.A., Danilova I.G., Medvedeva S.J., Gette I.F., Tonkushina M.O. Studying of safety of molybden nanocluster polyoxometalates indented for address delivery of medicinal substances. Ural Medical Journal, 2010, 9(74), P. 114–117.

137. Ostroushko A.A., Gette I.F., Medvedeva S.J., Tonkushina M.O., Danilova I.G., Prokofyeva A.V., Morozova M.V. Estimation of safety of ferrum-molybdenum nanocluster polyoxometallates indented for address delivery of medicines. Bulletin of Ural Medical Academic Science, 2011, 2(34), P. 107–110.

138. Sodemann W.A., Sodemann Th.M. Pathologic physiology. Philadelphia: W.B. Saunders Co., 1985, 1154 pp.

139. Ostroushko A.A., Adamova L.V., Grzhegorzhevskii K.V., Gagarin I.D., Koveza E.V., Danilova I.G., Gette I.F., Ulitko M.V., Vlasov D.A., Belozerova K.A., Men’shikov S. Yu. Studies of the Functional Properties of Nanocluster Polyoxomolybdates and Materials on Their Basis. XXI Mendeleev Congress on General and Applied Chemistry. Saint Petersburg, 2019. Book 2a: Abstracts. - Saint Petersburg, 2019, P. 86.

140. Zurabyan S.E. Fundamentals of Bioorganic Chemistry. GEOTAR-Media, 2012. 304 pp.

141. Ostroushko A.A., Gette I.F., Brilliant S.A., Danilova I.G. Application of Nanocluster Iron-Molybdene Polyoxometalates for Correction of Experimental Posthemorrhagic Anemia. Nanotechnol. Russia, 2019, 14(3-4), P. 159–164.

142. Ostroushko A.A., Tonkushina M.O., Gagarin I.D., Grzhegorzhevskii K.V., Danilova I.G., Gette I.F. Method of post-hemorragic anemia correction. Patent RU 2671077 (C1) RU, 2018.

143. Danilova I.G., Gette I.F., Medvedeva S.Y., Mukhlynina E.A., Tonkushina M.O., Ostroushko A.A. Changing the Content of Histone Proteins and Heat-Shock Proteins in the Blood and Liver of Rats after the Single and Repeated Administration of Nanocluster Iron-Molybdenum Polyoxometalates. Nanotechnologies in Russia, 2015, 10(9-10), P. 820–826.

144. Mecke A., Uppuluri S., Sassanella T.M., Lee D.K., Ramamoorthy A., Baker J.R. Jr., Orr B.G., Banaszak Holl M.M. Direct observation of lipid bilayer disruption by poly (amidoamine) dendrimers. Chem. Phys. Lipids, 2004, 132(1), P. 3–14.

145. Sayes C.M., Wahi R., Kurian P.A., Liu Y., West J.L., Ausman K.D., Warheit D.B., Colvin V.L. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci., 2006, 92(1), P. 174–185.

146. Zager R.A., Johnson A.C. Progressive histone alterations and proinflammatory gene activation: consequences of heme protein/iron-mediated proximal tubule injury. Am. J. Physiol. Renal Physiol., 2010, 298(3), P. 827–837.

147. Gette I.F. Content of histone proteins in lymphocytes of rats with alloxanic diabetes in the conditions of modulation activity of macrophages. Bulletin of Ural Medical Academic Science, 2014, 3(49), P. 19–20.

148. Villeneuve L.M., Reddy M.A., Lanting L.L., Wang M., Meng L., Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatoryphenotype of vascular smooth muscle cells in diabetes. Proc. Natl. Acad. Sci. USA, 2008, 105(26), P. 9047–9052.

149. Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B., Hightower L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones, 2009, 14(1), P. 105–111.

150. Stacchiotti A., Rodella L.F., Ricci F., Rezzani R., Lavazza A., Bianchi R. Stress proteins expression in rat kidney and liver chronically exposed to aluminium sulphate. Histol Histopathol., 2006, 21(2), P. 131–140.

151. Walter S., Buchner J. Molecular chaperones-cellular machines for protein folding. Angew. Chem. Int. Ed. Engl., 2002, 41(7), P. 1098–1113.

152. Bonardi M.A., Giovanetti E., Legname G., Fossati G., Porro G., Gromo G., Modena D., Marcucci F. Cochaperonins are histone-binding proteins. Biochem. Biophys. Res. Commun., 1995, 206(1), P. 260–265.

153. Wuillemin N., Terracciano L., Beltraminelli H., Schlapbach C., Fontana S., Kra¨henbühl S., Pichler W.J., Yerly D. T cells infiltrate the liver and kill hepatocytes in HLA-B(*)57:01-associated floxacillin-induced liver injury. Am. J. Pathol., 2014, 184(6), P. 1677–1682.

154. Ghedira I., Landolsi H., Mankai A., Fabien N., Jeddi M. Antihistones antibodies in systemic lupus erythematosus, comparison of three assays: Elisa, dot blot and immunoblot. Pathol. Biol. (Paris), 2006, 54(3), P. 148–154.

155. Westerheide S.D., Kawahara T.L., Orton K., Morimoto R.I. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J. Biol. Chem., 2006, 281(14), P. 9616–1922.

156. Wickner S., Maurizi M.R., Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science, 1999, 286(5446), P. 1888–1893.

157. Reference book on laboratory methods of a research (Sprawochnik po laboratornym metodam issledowaniya). Ed. Danilova L.A. SPb: Piter, 2003, 736 pp. (In Russian).

158. Chshieva F.T., Tsirihov O.T., Chsieva M.O., Muzaeva R.V., Timoshenko V.Yu. Studying the Influence of Nanocrystal Silicon on Maintenance of Aminotransferases, Alkaline Phospatase, Bilirubin and Cholesterol in Rats Blood. Reports of Samara Scientific Center of Russian Academy of Sciences (RAS), 2011, 13, 1(7), P. 1764–1766.

159. Danilova I.G., Gette I.F., Medvedeva S.Yu., Belousova A.V., Tonkushina M.O., Ostroushko A.A. Influence of Iron-Molybdenum Nanocluster Polyoxometalates on the Apoptosis of Blood Leukocytes and the Level of Heat-Shock Proteins in the Cells of Thymus and Spleen in Rats. Nanotechnologies in Russia, 2016, 11(9-10), P. 653–662.

160. Gette I., Ostroushko A., Danilova I., Medvedeva S., Pozdina V. Impact of iron-molybdenum polyoxometalates on the thymus and blood leukocytes in rats. Virchovs Archiv. European Journal of Pathology, 2018, 473(Suppl. 1), P. 325–326.

161. Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K.V., Gette I.F., Vlasov D.A., Ermoshin A.A., Antosyuk O.N., Shikhova S.V., Danilova I.G. The Physicochemical Properties and Influence on Living Organisms of Nanocluster Polyoxomolybdates as Prospective Bioinspired Substances (Based on Materials from the Plenary Lecture). J. Molec. Liq., 2019, 301, P. 110910.

162. Popov A.L., Ermakov A.M., Shekunova T.O., Shcherbakov A.B., Ermakova O.N., Ivanova O.S., Popova N.R., Baranchikov A.Ye., Ivanov V.K. PVP stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via induction of intracellular oxidative stress. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(1), P. 92–101.

163. Ostroushko A.A., Ulitko M.V., Tonkushina M.O., Zubarev I.V., Medvedeva S.Yu., Danilova I.G., Gubaeva O.V., Gagarin I.D., Gette I.F. Influence of nanocluster molybdenum-containing polyoxometalates on the morpho-functional condition of fibroblastes in culture. Nanotechnologies in Russia, 2018, 13(1-2), P. 3–11.

164. Volkmer, D., Du Chesne A., Kurth D.G., Schnablegger H., Lehmann P., Koop M.J., Müller A. Toward nanodevices: Synthesis and characterization of the nanoporous surfactant-encapsuested Keplerate (DODA)(40)(NH4)(2)[(H2O)(n) subset of Mo132O372(CH3COO)(30)(H2O)(72)]. J. Am. Chem. Soc., 2000, 122(9), P. 1995–1998.

165. Clemente-Leon M., Ito T., Yashiro H., Yamase T. Two-Dimensional Array of Polyoxomolybdate Nanoball Constructed by Langmuir-Blodgett Semiamphiphilic Method. Chem. Mater., 2007, 19, P. 2589–2594.

166. Fan D., Hao J. Phase stability of Keplerate-type polyoxomolybdates controlled by added cationic surfactant. J. Colloid Interface Sci., 2009, 333, P. 757–763.

167. Car P.-E., Patzke G.R. The Fascination of Polyoxometalate Chemistry. Inorganics, 2015, 3(2), P. 511–515.

168. Watfa N., Floquet S., Terazzi E., Salomon W., Gue´ne´e L., Buchwalder K.L., Hijazi A., Naoufal D., Piguet C., Cadot E. Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO)30(H2O)72]42− and Imidazolium Cations. Inorganics, 2015, 3(2), P. 246–266.

169. Floquet, S., Terazzi E., Korenev V.S., Hijazi A., Guénée L., Cadot E. Layered ionic liquid-crystalline organisations built from nano - capsules [Mo132O312S60(SO4)x(H2O)132−2x](12+2x)− and DODA+ cations. Liq. Cryst., 2014, 41(6), P. 1000–1007.

170. Kurth D.G., Lehmann P., Volkmer D., Müller A., Schwahn D. Biologically inspired polyoxometalate-surfactant composite materials. Investigations on the structures of discrete, surfactant-encapsulated clusters, monolayers, and Langmuir-Blodgett films of (DODA)40(NH4)2[(H2O)n ⊂ Mo132O372(CH3CO2)30 ×(H2O)72]. J. Chem. Soc. Dalton Trans., 2000, 21, P. 3989–3998.

171. Floquet S., Terazzi E., Hijazi A., Guénée L., Piguet, C., Cadot E. Evidence of Ionic Liquid Crystal Properties for a DODA+ Salt of the Keplerate [Mo132O372(CH3COO)30(H2O)72]42−. New J. Chem., 2012, 36, P. 865–868.

172. Panagiotopoulos A., Douvas A.M., Argitis P., Coutsolelos A.G. Porphyrin-Sensitized Evolution of Hydrogen using Dawson and Keplerate Polyoxometalate Photocatalysts. ChemSusChem, 2016, 9, P. 3213–3219.

173. Liu S., Tang Z. Polyoxometalate-based functional nanostructured films: Current progress and future prospects. Nano Today, 2010, 5, P. 267– 281.

174. Fan D., Hao J. Fabrication and Electrocatalytic Properties of Chitosan and Keplerate-Type Polyoxometalate {Mo72Fe30} Hybrid Films. J. Phys. Chem. B, 2009, 113, P. 7513–7516.

175. Tonkushina M.O., Alekseeva O.V., Agafonov A.V., Ostroushko A.A. Viscosity and Electrophysical Characteristics of Solutions Containing Nanocluster Polyoxometalates and Polyvinylpyrrolidone. Russ. J. Phys. Chem. A, 2016, 90(4), P. 838–842.

176. Tonkushina M.O., Kraev A.S., Alekseeva O.V., Ostroushko A.A., Agafonov A.V. Effect of Polyoxomolybdate Nanocluster Doping on the Dielectric Characteristics of Polyvinyl Alcohol Nanocomposite Films. Russ. J. Inorg. Chem., 2016, 61(4), P. 477–481.

177. Ostroushko A.A., Safronov A.P., Tonkushina M.O. Thermochemical Study of Interaction between Nanocluster Polyoxomolybdates and Polymers in Film Compositions. Russ. J. Phys. Chem. A, 2014, 88(2), P. 295–300.

178. Ostroushko A.A., Sennikov M.Yu., Tonkushina M.O. Interaction of Polyoxometalate Mo132 with Poly(vinyl alcohol). Russ. J. Inorg. Chem., 2009, 54(4), P. 617–623.

179. Ostroushko A.A., Gagarin I.D., Danilova I.G., Gette I.F. The use of nanocluster polyoxometalates in the bioactive substance delivery systems. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(3), P. 318–349.

180. Cui J., Fan D., Hao J. Magnetic Mo72Fe30-embedded hybrid nanocapsules. J. Coll. Interface Sci., 2009, 330(2), P. 488–492.

181. Zhao W., Cui J., Hao J., Van Horn J.D. Co-assemblies of polyoxometalate {Mo72Fe30}/double-tailed magnetic surfactant for magnetic-driven anchorage and enrichment of protein. J. Coll. Interface Sci., 2019, 536, P. 88–97.

182. Ostroushko A.A., Adamova L.V., Eremina E.V., Gzhegorzhevskii K.V., Velichko E.V., Bogdanov S.G., Pirogov A.N. Thermodynamics of Acetone Sorption from Vapor Phase by Keplerate and Toroid Polyoxomolybdate Nanoclusters. Russ. J. Phys. Chem. A, 2017, 91(7), P. 1313– 1318.

183. Tonkushina M.O., Ostroushko A.A. Enthalpy of Mixing of Porous Nanocluster Polyoxometalates of Keplerate-Type Mo72Fe30 with Polyvinyl Alcohol and Polyethylene Glycol. Russ. J. Phys. Chem. A, 2017, 91(6), P. 1076–1079.

184. Ostroushko A.A., Tonkushina M.O., Safronov A.P. New Data for Molybdenum Polyoxometallate with the Buckyball Structure Containing Acetate Groups and Compositions Based Thereon. Russ. J. Inorg. Chem., 2010, 55(5), P. 808–813.

185. Ostroushko A.A., Gagarin I.D., Tonkushina M.O., Grzhegorzhevskii K.V., Adamova L.V., Eremina E.V., Russkikh O.V., Gette I.F., Danilova I.G., Kim G.A. The Functionalization of Nannocluster Polyoxomolybdates by Various Molecules. VIIIth Intern. Symp. “Design and Synthesis of Supramolecular Architectures”, IInd Yoyuth School on Supramolecular and Coordination Chemistry. Apr. 25-29, 2016. Kazan, Russia. P. 136.

186. Barsukov L.I. Liposomes. Soros Education J., 1998, 10, P. 2–9.

187. Taboada P., Velasquez G., Barbosa S., Castelletto V., Nixon S.K., Yang Z., Heatley F., Hamley I.W., Mosquera V., Ashford M., Attwoodand D., Booth C. Block copolymers of ethylene oxide and phenyl glycidyl ether: Micellization, gelation and drug solubilization. Langmuir, 2005, 21, P. 5263–5271.

188. Hamley I.W., Castelletto V., Fundin J., Crothers M., Attwoodand D., Talmon Y. Close-packing of Diblock Copolymer Micelles. Colloid Polym. Sci., 2004, 282, P. 514–517.

189. Hamley I.W. Nanoshells and Nanotubes from Block Copolymers. Soft Matter., 2005, 1, P. 36–43.

190. De Geest B.G., De Koker S., Sukhorukov G.B., Kreft O., Parak W.J., Skirtach A.G., Demeester J., De Smedt S.C., Hennink W.E. Polyelectrolyte microcapsules for biomedical applications. Soft Matter., 2009, 5, P. 282–291.

191. Herna´ndez R.M., Orive G., Murua A., Pedraz J.L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Delivery Rev., 2010, 62, P. 711–730.

192. Jämsä S., Mahlberg R., Holopainen U., Ropponen J., Savolainen A., Ritschkoff A.-C. Slow release of a biocidal agent from polymeric microcapsules for preventing biodeterioration. Progress in Organic Coatings, 2013, 76, P. 269–276.

193. Zhang Y., Chan H.F., Leong K.W. Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Delivery Rev., 2013, 65, P. 104–120.

194. Kaur I.P., Singh H. Nanostructured drug delivery for better management of tuberculosis. J. Controlled Release, 2014, 184, P. 36–50.

195. Elistratova J., Akhmadeev B., Gubaidullin A., Korenev V., Sokolov M., Nizameev I., Stepanov A., Ismaev I., Kadirov M., Voloshina A., Mustafina A. Nanoscale hydrophilic colloids with high relaxivity and low cytotoxicity based on Gd(III) complexes with Keplerate polyanions. New J. Chem., 2017, 41(13), P. 5271–5275.

196. Ostroushko A.A., Danilova I.G., Gette I.F., Tonkushina M.O. Behavior of Associates of Keplerate Type Porous Spherical Mo72Fe−30 Clusters with Metal Cations in Electric Field Driven Ion Transport. Russ. J. Inorg. Chem., 2015, 60(4), P. 500–504.

197. Ostroushko A., Gagarin I., Tonkushina M., Grzhegorzhevskii K., Russkikh O. Association of spherical porous nanocluster Keplerate-type polyoxometalate Mo72Fe30 with biologically active substances. Journal of Cluster Science, 2018, 29(1), P. 111–120.

198. Ostroushko A.A., Tonkushina M.O. Destruction of Porous Spherical Mo132 Nanocluster Polyoxometallate of Keplerate Type in Aqueous Solutions. Russ. J. Phys. Chem. A, 2016, 90(2), P. 436–442.

199. Verhoeff A.A., Kistler M.L., Bhatt A., Pigga J., Groenewold J., Klokkenburg M., Veen S., Roy S., Liu T., Kegel W.K. Charge Regulation as a Stabilization Mechanism for Shell-Like Assemblies of Polyoxometalates. Physical Review Letters, 2007, 99(6), P. 066104.

200. Ostroushko A.A., Zubarev A.Yu., Bublik I.V., Sennikov M.Yu., Iskakova L.Yu., Safronov A.P. Modeling and calculation of the association processes between oxygen-containing polyanions and nonionic polymers. Russ. J. Inorg. Chem., 2004, 49(7), P. 1028–1033.

201. Ostroushko A.A. Interaction of Keplerate-Type Molybdenum-Based Porous Spherical Nanoclusters with Polymer Macromolecules. Russ. J. Inorg. Chem., 2015, 60(3), P. 387–391.

202. Ostroushko A.A., Danilova I.G., Tonkushina M.O., Medvedeva S.Yu., Gette I.F., Mukhlynina E.A., Prokofieva A.V., Morozova M.V., Russkikh O.V. Toxicity Studying of Polyoxometalat Mo72Fe30, Possibilities of Its Transport in Organism and Interactions with other Substances. Congress and Exhibition on Advanced Materials and Processes. 25.-27. Sept. 2012, Darmstadt, Germany. F2-1098.

203. Cedervall T., Lynch I., Lindman S., Berggard T., Thulin E., Nilsson H., Dawson K.A., Linse S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA, 2007, 104, P. 2050–2055.

204. Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts Proc. Natl Acad. Sci. USA, 2008, 105, P. 14265–14270.

205. Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. ACS Nano, 2010, 4, P. 3623–3632.

206. Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem. Soc. Rev., 2015, 44, P. 6094–6121.

207. Walkey C.D., Olsen J.B., Song F., Liu R., Guo H., Olsen D.W.,Cohen Y., Emili A., Chan W.C. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 2014, 8, P. 2439–2455.

208. Arcamone F., Cassinelli G., Franceschi G., Penco S., Pol C., Redaelli S., Selva A. Structure and Physicochemical Properties of Adriamycin (Doxorubicin). Int. Symp. Adriamycin, 1972, P. 9–22.

209. Arcamone F., Discovery and Development of Doxorubicin. Med. Chem. (Los. Angeles), Academic Press, New York, 1981, P. 1–47.

210. Arcamone F. Antitumor anthracyclines: Recent developments. Med. Res. Rev., 1984, 4, P. 153–188.

211. Cagel M., Grotz E., Bernabeu E., Moretton M.A., Chiappetta D.A. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov. Today, 2017, 22, P. 270–281.

212. Borišev I., Mrdanovic J., Petrovic D., Seke M., Jović D., Srdenović B., Latinovic N., Djordjevic A. Nanoformulations of doxorubicin: How far have we come and where do we go from here? Nanotechnology, 2018, 29, P. 33202(1-21).

213. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical pharmacology, 1999, 57(7), P. 727–741.

214. Tacar O., Sriamornsak P., Dass C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65, P. 157–170.

215. Fojtu M., Gumulec J., Stracina T., Raudenska M., Skotakova A., Vaculovicova M., Masarik M. Reduction of doxorubicin-induced cardiotoxicity using nanocarriers: a review. Current drug metabolism, 2017, 18(3), P. 237–263.

216. Hatakeyama H., Akita H., Ishida E., Hashimoto K., Kobayashi H., Aoki T., Yasuda J., Obata K., Kikuchi H., Ishida T., Kiwada H., Harashima H. Tumor targeting of doxorubicin by anti -MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm., 2007, 342, P. 194–200.

217. Peller M., Willerding L., Limmer S., Hossann M., Dietrich O., Ingrisch M., Sroka R., Lindner L.H. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors. J. Control. Release, 2016, 237, P. 138–146.

218. Haeri A., Zalba S., ten Hagen T.L.M., Dadashzadeh S., Koning G.A. EGFR targeted thermosensitive liposomes: A novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery. Colloids Surfaces B Biointerfaces, 2016, 146, P. 657–669.

219. Sesarman A., Tefas L., Sylvester B., Licarete E., Rauca V., Luput L., Patras L., Banciu M., Porfire A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells, Pharmacol. Reports, 2017, 70, P. 331–339.

220. Li Q., Tang Q., Zhang P., Wang Z., Zhao T., Zhou J., Li H., Ding Q., Li W., Hu F., Du Y., Yuan H., Chen S., Gao J., Zhan J., You J. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes. Biomaterials, 2015, 57, P. 1–11.

221. Xie Q., Deng W., Yuan X., Wang H., Ma Z., Wu B., Zhang X. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. Eur. J. Pharm. Biopharm., 2018, 122, P. 87–95.

222. Plourde K., Derbali R.M., Desrosiers A., Dubath C., Valle´e-Be´lisle A., Leblond J., Aptamer-based liposomes improve specific drug loading and release. J. Control. Release, 2017, 251, P. 82–91.

223. Park J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4, P. 93–97.

224. Immordino M.L., Dosio F., Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine, 2006, 1, P. 297–315.

225. Gonc¸alves M., Mignani S., Rodrigues J., Toma´s H. A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. J. Control. Release, 2020, 317, P. 347–374.

226. Benesch M., Urban C. Liposomal cytarabine for leukemic and lymphomatous meningitis: recent developments. Expert Opin. Pharmacother., 2008, 9, P. 301–309.

227. Yu M.K., Park J., Jon S. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics, 2012, 2(1), P. 3–44.

228. Qu X., Yang C., Zhang J., Ding N., Lu Y., Huang L., Xiang G. In vitro evaluation of a Folate-bovine serum albumin-doxorubicin conjugate. J. Drug Targeting, 2010, 18(5), P. 351–361.

229. Sun J., Zhang L., Zhang Y., Yue C. W., Lin J., Wang H., Fang Z.-J., Wu J. Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. J. microencapsulation, 2019, 36(8), P. 728–737.

230. Park C., Meghani N., Amin H., Tran P. H. L., Tran T. T. D., Nguyen V. H., Lee B. J. The roles of short and long chain fatty acids on physicochemical properties and improved cancer targeting of albumin-based fattigation-platform nanoparticles containing doxorubicin. Int. J. Pharmaceutics, 2019, 564, P. 124–135.

231. Kimura K., Yamasaki K., Nishi K., Taguchi K., Otagiri M. Investigation of anti-tumor effect of doxorubicin-loaded human serum albumin nanoparticles prepared by a desolvation technique. Cancer chemotherapy and pharmacology, 2019, 83(6), P. 1113–1120.

232. Lee J.H., Moon H., Han H., Lee I.J., Kim D., Lee H.J., Ha Sh.-W., Kim H., Chung J.W. Antitumor Effects of Intra-Arterial Delivery of Albumin-Doxorubicin Nanoparticle Conjugated Microbubbles Combined with Ultrasound-Targeted Microbubble Activation on VX2 Rabbit Liver Tumors. Cancers, 2019, 11(4), P. 581.

233. Muniswamy V.J., Raval N., Gondaliya P., Tambe V., Kalia K., Tekade R.K. ’Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int. J. Pharmaceutics, 2019, 555, P. 77–99.

234. Delorme V., Lichon L., Mahindad H., Hunger S., Laroui N., Daurat M., Godefroy A., Coudane J., Gary-Bobo M., Van Den Berghe H. Reverse Poly (ε-caprolactone)-g-Dextran Graft Copolymers. Nano-carriers for Intracellular Uptake of Anticancer Drugs. Carbohydrate Polymers, 2019, P. 115764.

235. Wang H., Li Z., Lu S., Li C., Zhao W., Zhao Y., Yu Sh., Wang T., Sun T. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect. Materials Today Communications, 2020, 22, P. 100764.

236. Wang M., Yan J., Li C., Wang X., Xiong J., Pan D., Wang L., Xu Yu., Xiaotian Li Yang M. Cationic Poly (amide-imide)-Conjugated Camptothecin Prodrug with Variable Nanomorphology for Efficient Reductive-Responsive Drug Delivery. European Polymer Journal, 2019, P. 109462.

237. Li Y., Gao F., Guo J., Ren P., Tian Z., Bai J., Hua J. Polymeric micelles with aggregation-induced emission based on microbial ε-polylysine for doxorubicin delivery. European Polymer Journal, 2020, 122, P. 109355.

238. Fang J.Y., Lin Y.K., Wang S.W., Lee R.S. Synthesis, and characterization folate-conjugated photocleavable poly (4-substituted-ε-caprolactone) polymers for drug delivery. Int. J. Polymeric Materials and Polymeric Biomaterials, 2020, 69(1), P. 53–63.

239. Ni G., Yang G., He Y., Li X., Du T., Xu L., Zhou S. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy. Chemical Engineering Journal, 2020, 379, P. 122317.

240. Liu P., Zhang R. Polymer microspheres with high drug-loading capacity via dual-modal drug-loading for modulating controlled release property in pH/reduction dual-responsive tumor-specific intracellular triggered doxorubicin release. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, P. 291–295.

241. Jiang J., Li J., Zhou B., Niu C., Wang W., Wu W., Liang J. Fabrication of Polymer Micelles with Zwitterionic Shell and Biodegradable Core for Reductively Responsive Release of Doxorubicin. Polymers, 2019, 11(6), P. 1019.

242. Banerjee D., Bose S. Effects of polymer chemistry, concentration, and pH on doxorubicin release kinetics from hydroxyapatite-PCL-PLGA composite. Journal of Materials Research, 2019, 34(10), P. 1692–1703.

243. Tan Y., Yang X., Dai S., Lian K., Wen L., Zhu Y., Meng T., Liu X., Yuan H., Hu F. In vivo programming of tumor mitochondria-specific doxorubicin delivery by a cationic glycolipid polymer for enhanced antitumor activity. Polymer Chemistry, 2019, 10(4), P. 512–525.

244. Butowska K., Kozak W., Zdrowowicz M., Makurat S., Rychłowski M., Hac´ A., Anna Herman-Antosiewicz A., Piosik J., Rak J. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Structural Chemistry, 2019, 30(6), P. 2327–2338.

245. Grebinyk A., Prylutska S., Grebinyk S., Prylutskyy Y., Ritter U., Matyshevska O., Dandekar T., Frohme M. Complexation with C60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro. Nanoscale research letters, 2019, 14(1), P. 61.

246. Kepinska M., Kizek R., Milnerowicz H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis. Electrophoresis, 2018, 39(18), P. 2370–2379.

247. Petrovic D., Seke M., Borovic M. L., Jovic D., Borisev I., Srdjenovic B., Rakocevic Z., Pavlovic V., Djordjevic A. Hepatoprotective effect of fullerenol/doxorubicin nanocomposite in acute treatment of healthy rats. Experimental and molecular pathology, 2018, 104(3), P. 199–211.

248. Zhou Y., Li J., Ma H., Zhen M., Guo J., Wang L., Jiang L., Shu C., Wang C. Biocompatible [60]/[70] Fullerenols: Potent Defense against Oxidative Injury Induced by Reduplicative Chemotherapy. ACS applied materials & interfaces, 2018, 9(41), P. 35539–35547.

249. Grebinyk A., Prylutska S., Chepurna O., Grebinyk S., Prylutskyy Y., Ritter U., Ohulchanskyy T. Y., Matyshevska O., Dandekar T., Frohme M. Synergy of chemo-and photodynamic therapies with C60 fullerene-doxorubicin nanocomplex. Nanomaterials, 2019, 9(11), P. 1540.

250. Ramalingam V., Varunkumar K., Ravikumar V., Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci. Rep., 2018, 8, P. 1–12.

251. Chen W.-H., Xu X.-D., Jia H.-Z., Lei Q., Luo G.-F., Cheng S.-X., Zhuo R.-X., Zhang X.-Z. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials, 2013, 34, P. 8798–8807.

252. Prabaharan M., Grailer J.J., Pilla S., Steeber D.A., Gong S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials, 2009, 30, P. 6065–6075.

253. Elbialy N.S., Fathy M.M., Khalil W.M. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int. J. Pharm., 2015, 490, P. 190–199.

254. Jeon S., Ko H., Vijayakameswara Rao N., Yoon H.Y., You D.G., Han H.S., Um W., Saravanakumar G., Park J.H. A versatile gold cross-linked nanoparticle based on triblock copolymer as the carrier of doxorubicin. R. Soc. Chem. Adv., 2015, 5, P. 70352–70360.

255. Benyettou F., Rezgui R., Ravaux F., Jaber T., Blumer K., Jouiad M., Motte L., Olsen J.-C., Platas-Iglesias C., Magzoub M., Trabolsi A. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. J. Mater. Chem., 2015, B. 3, P. 7237– 7245.

256. Liu Y., Yang K., Cheng L., Zhu J., Ma X., Xu H., Li Y., Guo L., Gu H., Liu Z. PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine Nanotechnology, Biol. Med., 2013, 9, P. 1077–1088.

257. Gaihre B., Khil M.S., Lee D.R., Kim H.Y. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. Int. J. Pharm., 2009, 365, P. 180–189.

258. Hałupka-Bryl M., Asai K., Thangavel S., Bednarowicz M., Krzyminiewski R., Nagasaki Y. Synthesis and in vitro and in vivo evaluations of poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) magnetic nanoparticles containing doxorubicin as a potential targeted drug delivery system. Colloids Surfaces B Biointerfaces, 2014, 118, P. 140–147.

259. Nadeem M., Ahmad M., Akhtar M.S., Shaari A., Riaz S., Naseem S., Masood M., Saeed M.A. Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. PLoS One, 2016, 11, P. 1–12.

260. Kayal S., Ramanujan R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng., 2010, 30, P. 484–490.

261. Grzhegorzhevskii K.V., Tonkushina M.O., Fokin A.V., Belova K.G., Ostroushko A.A. Coordinative interaction between nitrogen oxides and ironmolybdenum POM Mo72Fe30. Dalton Transactions, 2019, 48(20), P. 6984–6996.

262. McCleverty J.A., Chemistry of nitric oxide relevant to biology. Chem. Rev., 2004, 104(2), P. 403–418.

263. Akaike T., Maeda H. Nitric oxide and virus infection. Immunology, 2000, 101(3), P. 300–308.

264. Ignarro LJ. Preface to this special journal issue on nitric oxide chemistry and biology. Arch. Pharm. Res., 2009, 32(8), P. 1099–1101.

265. Cattaneo D., Warrender S.J., Duncan M.J., Castledine R., Parkinson N., Haley I., Morris R.E. Water based scale-up of CPO-27 synthesis for nitric oxide delivery. Dalt. Trans., 2016, 45(2), P. 618–629.

266. Lakomkin V.L., Abramov A.A., Ruuge E.K., Kapel’ko V.I., Chazov E.I., Vanin A.F. The hypotensive effect of the nitric monoxide donor Oxacom at different routs of its administration to experimental animals. Eur. J. Pharm., 2015, 765, P. 525–532.

267. McCleverty J.A. Chemistry of Nitric Oxide Relevant to Biology. Chem. Rev., 2004, 104, P. 403–418.

268. Aldoshin S.M., Lysenko K.A., Antipin M.Yu., Sanina N.A., Gritsenko V.V. Precision X-ray study of mononuclear dinitrosyl iron complex [Fe(SC2H3N3)(SC2H2N3)(NO)2]·0.5H2O at low temperatures. J. Molec. Struct., 2008, 875, P. 309–315.

269. Roudneva T.N., Syrtsova L.A., Sanina N.A., Shkondina N.I., Kotel‘nikov A.I., Aldoshin S.M. Formation of iron nitrosyl complexes of ferri- and ferrocytochrome C at its interaction with nitrosyl iron complex cysaconite. Nitric Oxide: Biology and Chemistry, 2010, 22, P. 546.

270. Timoshin A.A., Lakomkin V.L., Abramov A.A., Ruuge E.K., Vanin A.F. Effect of dinitrosyl iron complexes on NO level in rat organs during endotoxin shock. Doklady Biochemistry and Biophysics, 2015, 462(1), P. 166–168.

271. Andreyev-Andriyevsky A.A., Mikoyan V.D., Serezhenkov V.A., Vanin A.F. Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands. Nitric Oxide - Biology and Chemistry, 2011, 24(4), P. 217–223.

272. Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A., Vanin A.F., Topunov A.F. Globins and other nitric oxide-reactive proteins. Dinitrosyl iron complexes bound with haemoglobin as markers of oxidative stress. Methods in Enzymology, 2008, 436, P. 441–457.

273. Vanin A.F., Sanina N.A., Serezhenkov V.A., Burbaev D.Sh., Lozinsky V.I., Aldoshin S.M. Dinitrosyl-iron complexes with thiol-containing ligands: Spatial and electronic structures. Nitric Oxide – Biology and Chemistry, 2007, 16(1), P. 82–93.

274. Kurtikyan T.S., Martirosyan G.G., Lorkovic I.M., Ford P.C. Comparative IR Study of Nitric Oxide Reactions with Sublimed Layers of Iron(II)- and Ruthenium(II)-meso-Tetraphenylporphyrinates. J. Am. Chem. Soc., 2002, 124, P. 10124–10129.

275. Atsutoshi Y., Han J.E., Karlin K.D., Nam W. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion. Chem. Commun., 2014, 50, P. 1742–1744.

276. Müller A., Plass W., Krickemeyer E., Dillinger S., Bögge H., Armatage A., Proust A., Beugholt Ch., Bergmann U. [Mo57Fe6(NO)6O174(OH)3(H2O)41]15−: A Highly Symmetrical Giant Cluster with an Unusual Cavity and the Possibility of Positioning Paramagnetic Centers on Extremely Large Cluster Surfaces. Angew. Chem. Int. Ed. Engl., 1994, 33(8), P. 849–851.

277. Müller A., Krickemeyer E., Dillinger S., Bögge H., Plass W., Proust A., Dloczik L., Menke C., Meyer J., Rohlfing R. New Perspectives in Polyoxometalate Chemistry by Isolation of Compound Containing Very Large Moieties as Transferable Building Blocks: (NMe4)5[As2Mo8V4AsO40]·3H2O, (NH4)21[H3Mo57V6(NO)6O183(H2O)18]·65H2O, (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18]·14H2O and (NH4)12[Mo36(NO)4O108(H2O)16]·33H2O. Z. anorg. allg. Chem., 1994, 620, P. 599–619.

278. Müller A., Krickemeyer E., et al. [Mo−154(NO)14O420(OH)28(H2O)70](25±5)−: A Water-Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24 000. Angew. Chem. Int. Ed. Engl., 1995, 34(19), P. 2122–2124.

279. Matsumoto T., Nakamura I., Ishiguro K., Tsunashima R. Concentration Dependent Stability of Fullerene-Shaped Metal-Oxide Nanocluster {Mo132} in Aqueous Solution. Sci. Adv. Mat., 2014, 6, P. 1–5.

280. Grzhegorzhevskii K.V., Zelenovskiy P.S., Koryakova O.V., Ostroushko A.A. Thermal destruction of giant polyoxometalate nanoclusters: a vibrational spectroscopy study. Inorg. Chim. Acta, 2019, 489, P. 287–300.

281. Ostroushko A.A., Tonkushina M.O., et al. Study of the stability of solid polyoxometalate Mo72Fe30 with a buckyball structure. Russ. J. Inorg. Chem., 2012, 57(6), P. 858–863.

282. Ostroushko A.A., Tonkushina M.O., Safronov A.P., Men’shikov S.Yu., Korotaev V.Yu. Thermal Behavior of Polyoxometalate Mo132. Russ. J. Inorg. Chem., 2009, 54(2), P. 172–179.

283. Ostroushko A.A., Sennikov M.Yu. Polythermal Study of Electrophysical Characteristics of Poly(vinyl alcohol) Polymer-Salt Films. Russ. J. Inorg. Chem., 2009, 54(1), P. 115–120.

284. Bielan’ski A., Małecka-Luban’ska A., Micek-Ilnicka A., Müller A., Diemann E. Thermal properties of (NH4)32[Mo138O416H6(H2O)58(CH3COO)6]·approximately 250H2O: on the route to prove the complexity of a nanostructured landscape-especially with different type of H2O ligands-embedded in an ’ocean’ of water molecules. Inorg. Chim. Acta, 2002, 338, P. 7–12.

285. Bielan’ski A., Małecka-Luban’ska A., Micek-Ilnicka A., Diemann E. Thermal stability of giant wheel type polyoxomolybdates and their derivatives. J. Molec. Struct., 2006, 365, P. 55–65.

286. Ostroushko A.A., Korotayev V.Yu., Tonkushina M.O., Grzhegorzhevskii K., Vazhenin V.A., Kutyashev I.B., Martynova N.A., Men’shikov S.Yu., Selezneva N.V. Electrotransport, Sorption, and Photochemical Properties of Nanocluster Polyoxomolibdates with a Toroidal Structure. Russ. J. Phys. Chem. A, 2012, 86(8), P. 1268–1273.

287. Müller A., Diemann E., Kuhlmann Ch., Eimer W., Serain C., Tak T., Knochel A., Pranzas P.K. Hierarchic patterning: architectures beyond ’giant molecular wheels’. Chem. Commun., 2001, 19, P. 1928–1929.

288. Kistler M.L., Liu T., Gouzerh P., Todea A.-M., Müller A. Molybdenum-oxide based unique polyprotic nanoacids showing different deprotonations and related assembly processes in solution. Dalton Trans., 2009, 26, P. 5094–5100.

289. Liu T. An Unusually Slow Self-Assembly of Giant Inorganic Ions in Aqueous Solution, J. Am. Chem. Soc., 2003, 125, P. 312–313.

290. Liu T. Surfactant-Induced Trans-Interface Transportation and Complex Formation of Giant Polyoxomolybdate Clusters, J. Clust. Sci. (Achim Müller Issue), 2003, 14, P. 215–226.

291. Liu, G., Liu T. Thermodynamic properties of the unique self-assembly of Mo72Fe30 inorganic macro-ions in salt-free and salt-containing aqueous solutions. Langmuir, 2005, 21(7), P. 2713–2720.

292. Zhang J., Li D., Liu G., Glover K.J., Liu T. Lag Periods during the Self-Assembly of Mo(72)Fe(30) Macroions: Connection to the Virus Capsid Formation Process. J. Am. Chem. Soc., 2009, 131, P. 15152–15159.

293. Steinfeld J.I., Francisco J.S., Hase W.L. Chemical Kinetics and Dynamics, 2nd Edition., Prentice Hall. 1998, 409 pp.

294. Stanciu I. Mechanism of autocatalytic reactions. Publisher Lap Lambert Academic Publishing. 2014, 64 pp.

295. Ramirez W.F. Computational Methods in Process Simulation. 2nd edit. Butterworth-Heinemann. Oxford. 1997, 512 pp.

296. Müller A., Das S.K., Talismanov S., Roy S., Beckmann E., Bögge H., Schmidtmann M., Merca A., Berkle A., Allouche L., Zhou Y., Zhang L. Trapping Cations in Specific Positions in Tuneable “Artificial Cell” Channels: New Nanochemistry Perspectives. Angew. Chem. Int. Ed. Engl., 2003, 42, P. 5039–5044.

297. Ostroushko A.A., Sennikov M.Yu., Sycheva N.S. Features of Photochemical Reactions in Polymer-Salt Compositions Containing Ammonium Heptamolybdate and Polyvinyl Alcohol. Russ. J. Inorg. Chem., 2005, 50(7), P. 1050–1054.

298. Ostroushko A.A., Vazhenin V.A., Tonkushina M.O. Features of Thermophotoinitiated Degradation of Nanocluster Polyoxomolybdate Mo132 and Its Polymer-Containing Composites. Russ. J. Inorg. Chem., 2017, 62(4), P. 483–488.

299. Ostroushko A.A., Tonkushina M.O., Safronov A.P., Vazhenin V.A., Artemov M.Yu. Mutual Stabilization of Components in Composites of Polyoxomolybdates of Buckyball Structure and Water-Soluble Nonionic Polymers. Russ. J. Appl. Chem., 2010, 83(2), P. 332–336.

300. Gagarin I., Tonkushina M., Ostroushko A. Stabilization of Keplerate-type Spheric Porous Nanocluster Polyoxometalate Mo72Fe30. 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE sponsors: Russia (Siberia) Section. 7-8 May 2018 Yekaterinburg, Russia. P. 41–44.

301. Ostroushko A., Grzhegorzhevskii K., Gagarin I., Danilova I., Gette I., Ulitko M., Antosyuk O., Shikhova S., Vlasov D., Belozerova K. On some opportunities of using Keplerate-type polyoxomolybdates in biomedicine // 4th Russ. Conf. on Medicinal Chemistry with intern. Participants. MedChem 2019. Abstract book. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2019, 448 p. P. 96.

302. Grzhegorzhevskii K., Ostroushko A. The concept of novel drug relising system with feedback function based on inorganic-organic hybrid material. 4th Russ. Conf. on Medicinal Chemistry with intern. participants. MedChem 2019. Abstract book. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2019, 448 p. P. 200.

303. Grzhegorzhevskii K.V., Shevtsev N.S., et al. Prerequisites and prospects for the development of novel systems based on the Keplerate type polyoxomolybdates for the controlled release. Russian Chemical Bulletin, International Edition, 2020, 69(4), P. 804–814.

304. Fazylova V., Shevtsev N., Mikhailov S., Kim G., Ostroushko A., Grzhegorzhevskii K. Fundamental aspects of xanthene dye aggregation on the surfaces of nanocluster polyoxometalates: H to J aggregate switching. Chemistry Eur. J., 2020, P. 05781.

305. Sasaki S., Drummen G.P.C., Konishi G.C. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C, 2016, 4, P. 2731–2743.

306. Merkushev D.A., Usoltsev S.D., Marfin Y.S., Pushkarev A.P., Volyniuk D., Grazulevicius J.V., Rumyantsev E.V. BODYPY associates in organic matrices: spectral properties, photostability and evaluation as OLED emitters. Mater. Chem. Phys., 2017, 187, P. 104–111.

307. Arbeloa F.L., Ojeda P.R., Arbeloa I.L. Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions. J. Lumin., 1989, 44, P. 105–112.

308. Austin J.M., Harrison I.R., Quickenden T.I. Electrochemical and photoelectrochemical properties of rhodamine B. J. Phys. Chem., 1986, 90, P. 1839–1843.

309. Xu S., Wang Y., Zhao Y., Chen W., Wang J., He L., Su Z., Wang E., Kang Z.J. Keplerate-type polyoxometalate/semiconductor composite electrodes with light-enhanced conductivity towards highly efficient photoelectronic devices. Mater. Chem. A, 2016, 4, P. 14025–14032.

310. Grzhegorzhevskii K., Ostroushko A., Koriakova O., Ovchinnikova I., Kim G. Photoinduced charge transfer in the supramolecular structure based on toroid polyoxomolibdate Mo138 and xanthene dye - Rhodamine-B. Inorganica Chim. Acta, 2015, 436, P. 205–213.

311. Noble G.T., Stefanick J.F., et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32, P. 32–45.

312. Gao W., Wang J. Synthetic micro/nanomotors in drug delivery. Nanoscale, 2014, 6, P. 10486–10494.

313. Bordat A., Boissenot T., Nicolas J., Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev., 2019, 138, P. 167–192.

314. Patel S.G., Patel M.D., Patel A.J., Chougule M.B., Choudhury H. Solid lipid nanoparticles for targeted brain drug delivery. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors, Elsevier, 2018, P. 191–244.

315. Gao Y., Chen J., Zhang T., Szymanowski J.E.S., Burns P.C., Liu T. Inhomogeneous Distribution of Cationic Surfactants around Anionic Molecular Clusters. Chem. Eur. J., 2019, 25, P. 15741–15745.

316. Niu J.-Y., You X.-Z., Chun-ying Duan C.-Y., Fun H.-K., Zhong-yuan Zhou Z.-Y.A Novel Optical Complex between an Organic Substrate and a Polyoxometalate. Crystal and Molecular Structure of α-H4SiW12O40·4HMPA·2H2O (HMPA = Hexamethylphosphoramide). Inorg. Chem., 1996, 35(14), P. 4211–4217.

317. Andreev V.N., Chudnovskii F.A., Nikitin S.E., Kozyrev S.V. Photochromic effect in MoO Clusters - Citronic acid - H2O system. Mol. Mat., 1998, 11, P. 139–142.

318. Ostroushko A.A., Sennikov M.Yu. The Kinetics of Photochemical Processes in Polymer-Salt Systems. Russian Journal of Physical Chemistry A, 2009, 83(1), P. 111–115.

319. Yamase T. Photo- and Electrochromism of Polyoxometalates and Related Materials. Chem. Rev., 1998, 98, P. 307–325.

320. Bogomolova T.G. Diffusion of atmospheric oxygen into resting and moving mass of liquid (Diffuzia atmosphernogo kisloroda w pokoyashuusa i dwigushuusa massu gidkosti). Wesynik MGSU, 2009, 3, P. 205–210, (in Russian).

321. Ostroushko A.A., Adamova L.V., et al. Studies of the Functional Properties of Nanocluster Polyoxomolybdates and Materials on Their Basis. XXI Mendeleev Congress on General and Applied Chemistry. Saint Petersburg, 2019. Abstracts. Book 2a. P. 86.

322. Yamase T., Kurozumi T. Photoreduction of Polymolybdates in Aqueous Solutions containing Acetic Acid. J. Chem. Soc. Dalton Trans., 1983, P. 2205–2209.

323. Boggs B.K., King R.L., Botte G.G. Urea electrolysis: direct hydrogen production from urine. Chem. Commun., 2009, P. 4859–4861.

324. Yamase T., Ikawa T. Photogalvanic effect in alkylammonium molybdate solutions and production of hydrogen. Inorganica Chimica Acta, 1979, 37, P. 529–531.

325. Yamase T. Hydrogen production by ultraviolet irradiation of alkylammonium polytungstate in neutral aqueous solutions. Inorganica Chimica Acta, 1982, 64, P. 155–156.


Review

For citations:


Ostroushko A.A., Grzhegorzhevskii K.V., Medvedeva S.Yu., Gette I.F., Tonkushina M.O., Gagarin I.D., Danilova I.G. Physicochemical and biochemical properties of the Keplerate-type nanocluster polyoxomolybdates as promising components for biomedical use. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):81-112. https://doi.org/10.17586/2220-8054-2021-12-1-81-112

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)