Эволюция границ доменов в нанопроводах в терминах гранично-начальной задачи для 3D LLG уравнения
https://doi.org/10.17586/2220-8054-2021-12-1-42-59
Аннотация
Теория образования и распространения доменных стенок построена на линеаризованной версии преобразованного уравнения Ландау–Лифшица–Гилберта. Стереографическое преобразование Лакшманана–Накамуры после дополнительного экспоненциального преобразования, а затем линеаризации частично сохраняет информацию об исходной нелинейности, что позволяет сохранить динамику, форму и свойства доменной стенки. Для цилиндрически-симметричной геометрии провода построен традиционный ортонормированный базис Бесселя в сочетании с техникой проекционных операторов, применяемой к подпространствам направленного распространения доменных стенок. Сформулированы физически значимые задачи переключения динамики в дальних и близких точках от концов провода и представлены их решения в рамках метода Фурье. Находятся стационарные решения и вычерчиваются структура стены вдоль провода и участки распространения.
Список литературы
1. Ipatov M., Zhukova V., Zvezdin A.K., Zhukov A. Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires, J. Appl. Phys., 2000, 106, 103902.
2. Chizhik A.A., Zhukov A., Gonzalez A., Stupakiewicz A. Control of reversible magnetization switching by pulsed circular magnetic field in glass-coated amorphous microwires. Applied Physics Letters, 2018, 112 (7), 072407.
3. Stupakiewicz A., Chizhik A., et al. Ultrafast Magnetization Dynamics in Metallic Amorphous Ribbons with a Giant Magnetoimpedance Response. Physical Review Applied, 2020, 13, 044058.
4. Badarneh M.H.A.G., Kwiatkowski J., Bessarab P.F. Mechanisms of energy efficient magnetization switching in a bistable nanowire. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (3), P. 294–300.
5. Rodioniova V., Zhukova M., et al. The defects influence on domain wall propagation in bistable glass-coated microwires. Physica B, 2012, 407, P. 1446–1449.
6. Brown Jr. W.F. Micromagnetics, Domains, and Resonance. J. Appl. Phys., 1959, 106, 103902.
7. Frenkel I., Dorfman J.N. Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. Nature, 1930, 126, P. 274–278.
8. Landau L., Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion, 1935, 8 (153), P. 101–114.
9. Aharoni A. Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford, 1996, 192 p.
10. Schryer N.L., Walker L.R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys., 1974, 45, 5406.
11. Vereshchagin M, Baraban I, Leble S., Rodionova V. Structure of head-to-head domain wall in cylindrical amorphous ferromagnetic microwire and a method of anisotropy coefficient estimation. Journal of Magnetism and Magnetic Materials, 2020, 504, 166646.
12. Leble S. Waveguide Propagation of Nonlinear Waves. Impact of Inhomogeneity and Accompanying Effects, Springer, 2019, 288 p.
13. Varga R., Zhukov A., et al. Fast magnetic domain wall in magnetic microwires. Phys. Rev. B, 2006, 74, 212405.
14. Chizhik Al.,Zhukov A., Gonzalez J., and Stupakiewicz A. . Basic study of magnetic microwires for sensor applications: Variety of magnetic structures”.Journal of Magnetism and Magnetic Materials, 2017. 422 299 – 303,
15. Omelyanchik A., Gurevich A., et al. Ferromagnetic glass-coated microwires for cell manipulation. Journal of Magnetism and Magnetic Materials, 2020, 242–245, P. 216–223.
16. Amirov A., Baraban I., Panina L., Rodionova V. Direct Magnetoelectric Effect in a Sandwich Structure of PZT and Magnetostrictive Amorphous Microwires. Materials, 2020, 13 (4), 916.
17. Vázquez M. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications. Woodhead Publishing Series in Electronic and Optical Materials. Elsevier Science, 2015.
18. Lakshmanan M. The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview. Phil. Trans. R. Soc. A, 2011, 369, P. 1280–1300.
19. Lakshmanan M., Nakamura K. Landau–Lifshitz Equation of Ferromagnetism: Exact Treatment of the Gilbert Damping. Phys. Rev. Lett., 1984, 53, 2497.
20. Vereshchagin M. Structure of domain wall in cylindrical amorphous microwire. Physica B: Condensed Matter, 2018, 549, P. 91–93.
21. Janutka A., Gawron´ski P. Structure of magnetic domain wall in cylindrical microwire. IEEE Transactions on Magnetics, 2015, 51 (5), P. 1–6.
22. Huening F., Backes A. Direct observation of large Barkhausen jump in thin Vicalloy wires. IEEE Magnetics Letters, 2020, 11, 2506504.
23. Leble S. Practical Electrodynamics with Advanced Applications, IOP Publishing, 2020.
24. Baraban I., Leble S., Panina L., Rodionova V. Control of magneto-static and -dynamic properties by stress tuning in Fe–Si–B amorphous microwires with fixed dimensions. Journal of Magnetism and Magnetic Materials, 2019, 477, P. 415–419.
25. Leble S.B., Rodionova V.V. Dynamics of Domain Walls in a Cylindrical Amorphous Ferromagnetic Microwire with Magnetic Inhomogeneities. Theor. Math. Phys., 2020, 202, P. 252–264.
26. Kerimov M.K. Studies on the zeros of Bessel functions and methods for their computation. Comput. Math. and Math. Phys., 2014, 54, P. 1337–1388.
27. Leble S., Perelomova A. Dynamical projectors method in hydro- and electrodynamics, CRC Press, Taylor and Francis group, 2018.
28. Stano M., Fruchart O. Magnetic Nanowires and Nanotubes, Handbook of Magnetic Materials, 2018, DOI: 10.1016/bs.hmm.2018.08.002.
29. Alam J., Bran C., et al. Cylindrical micro and nanowires: Fabrication, properties and applications. Journal of Magnetism and Magnetic Materials, 2020, 513, 167074.
30. Popov I.Y. On the possibility of magnetoresistance governed by light. Nanosystems: physics, chemistry, mathematics, 2013, 4 (6), P. 795–799.
31. Chizhik A., Gonzalez J., Zhukov A., Gawron´ski P. Study of length of domain walls in cylindrical magnetic microwires. Journal of Magnetism and Magnetic Materials, 2020, 512, 167060.
32. Corte-León P., Gonzalez-Legarreta L., et al. Controlling the domain wall dynamics in Fe-, Ni- and Co-based magnetic microwires. Journal of Alloys and Compounds, 2020, 834, 155170.
Рецензия
Для цитирования:
Leble S. Эволюция границ доменов в нанопроводах в терминах гранично-начальной задачи для 3D LLG уравнения. Наносистемы: физика, химия, математика. 2021;12(1):42-59. https://doi.org/10.17586/2220-8054-2021-12-1-42-59
For citation:
Leble S. Domain wall evolution at nanowires in terms of 3D LLG equation initial-boundary problem. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):42-59. https://doi.org/10.17586/2220-8054-2021-12-1-42-59