Young’s modulus of phyllosilicate nanoscrolls measured by the AFM and by the in-situ TEM indentation
https://doi.org/10.17586/2220-8054-2021-12-1-118-127
Abstract
Ni3Si2O5(OH)4 phyllosilicate nanoscrolls were investigated by two techniques: the bending-based test method of AFM and the indentation method with visual control in STEM. In the first case, the average measured Young’s modulus, about 200 GPa, turned out to be significantly higher than in the second one, 40 GPa. The reasons for this discrepancy are analyzed.
About the Authors
M. M. KhalisovRussian Federation
Politekhnicheskaya, 26, Saint-Petersburg 194021; Makarova emb., 6, Saint-Petersburg, 199034
V. A. Lebedev
Ireland
Limerick, V94 T9PX
A. S. Poluboyarinov
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
A. V. Garshev
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
E. K. Khrapova
Russian Federation
Politekhnicheskaya, 26, Saint-Petersburg 194021
A. A. Krasilin
Russian Federation
Politekhnicheskaya, 26, Saint-Petersburg 194021
A. V. Ankudinov
Russian Federation
Politekhnicheskaya, 26, Saint-Petersburg 194021
References
1. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. Crystals, 2020, 10(8), P. 654(1–41).
2. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays Clay Miner., 2020, 68, P. 436–445.
3. Prinz V.Ya., Seleznev V.A., Gutakovsky A.K., Chehovskiy A.V., Preobrazhenskii V.V., Putyato M.A., Gavrilova T.A. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E: Low-dimensional Systems and Nanostructures, 2000, 6, P. 828– 831.
4. Gulina L.B., Tolstoy V.B., Lobinsky A.A., Petrov Yu.V. Formation of Fe and Fe2O Microspirals via Interfacial Synthesis. Part. Part. Syst. Charact., 2018, 35, P. 1800186
5. Scarfato P., Avallone E., Incarnato L., Di Maio L. Development and evaluation of halloysite nanotube-based carrier for biocide activity in construction materials protection. Appl. Clay Sci., 2016, 132, P. 336–342.
6. Cavallaro G., Danilushkina A., Evtugyn V., Lazzara G., Milioto S., Parisi F., Rozhina E., Fakhrullin R. Halloysite Nanotubes: Controlled Access and Release by Smart Gates. Nanomaterials, 2017, 7(8), 199, P. 1–12.
7. Krasilin A.A., Danilovich D.P., Yudina E.B., Bruyere S., Ghanbaja J., Ivanov V.K. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Appl. Clay Sci., 2019, 173, P. 1–11.
8. Zhang C., Zhu W., Li S., Wu G., Ma X., Wang X., Gong J. Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chem. Commun., 2013, 49, P. 9383(1–3).
9. Ashok J., Bian Z., Wang Z., Kawi S. Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability. Catal. Sci. Technol., 2018, 8(6), P. 1730–1742.
10. Bian Z., Kawi S. Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane. J. CO2 Util., 2017, 18, P. 345–352.
11. Krasilin A.A., Straumal E.A., Yurkova L.L., Khrapova E.K., Tomkovich M.V., Shunina I.G., Vasil’eva L.P., Lermontov S.A., Ivanov V.K. Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1. Russ. J. Appl. Chem., 2019, 92(9), P. 1251–1257.
12. Park J.C., Kang S.W., Kim J.-C., Kwon J.I., Jang S., Rhim G.B., Kim M., Chun D.H., Lee H.-T., Jung H., et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res., 2017, 10(3), P. 1044–1055.
13. Liu Y., Liu M. Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos. Sci. Technol., 2017, 143, P. 56–66.
14. Afanas’eva N.V., Gubanova G.N., Romashkova K.A., Sapegin D.A., Kononova S.V. Relaxation processes in an aromatic polyamide-imide and composites on its basis with hydrosilicate nanoparticles. Polym. Sci. Ser. A, 2016, 58(6), P. 956–967.
15. Mo H., Yang K., Li S., Jiang P. High thermal conductivity and high impact strength of epoxy nanodielectrics with functionalized halloysite nanotubes. RSC Adv., 2016, 6(73), P. 69569–69579.
16. Roy K., Debnath S.C., Pongwisuthiruchte A., Potiyaraj P. Up-to-date review on the development of high performance rubber composites based on halloysite nanotube. Appl. Clay Sci., 2019, 183, P. 105300(1–15).
17. Binnig G., Quate C.F., Gerber Ch. Atomic Force Microscope. Phys. Rev. Lett., 1986, 56(9), P. 930–933.
18. Wong E.W., Sheehan P.E., Lieber C.M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science, 1997, 277(5334), P. 1971–1975.
19. Bhushan B. edd. Nanotribology and Nanomechanics - An Introduction. Springer-Verlag Berlin Heidelberg, 2005, 1148 p.
20. Salvetat J.-P., Kulik A.J., Bonard J.-M., Briggs G.A.D., Stockli T., Me´te´nier K., Bonnamy S., Be´guin F., Burnham N.A., Forro´ L. Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes. Adv. Mater., 1999, 11(2), P. 161–165.
21. Salvetat J.-P., Bonard J.-M., Thomson N.H., Kulik A.J., Forro´ L., Benoit W., Zuppiroli L. Mechanical properties of carbon nanotubes. Appl. Phys. A, 1999, 69(3), P. 255–260.
22. Zheng X.-P., Cao Y.-P., Li B., Feng X.-Q., Wang G.-F. Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology, 2010, 21(20), P. 205702(1–6).
23. Timoshenko S., Goodier J.N. Theory of elasticity. McGraw-Hill, New York, 1970, 567 p.
24. Landau L.D., Lifshitz E.M. Theory of Elasticity. Pergamon Press Ltd., Oxford, 1970, 165 p.
25. Cuenot S., Demoustuer-Champagne S., Nysten B. Elastic modulus of polypyrrole nanotubes. Phys. Rev. Lett., 2000, 85(8), P. 1690–1693.
26. Kis S. Mechanical properties of mesoscopic objects. Thesis. Ecole Polytechnique Federale de Lausanne, 2003, 166 p.
27. Bruker Hysitron nanomechanical test instruments. URL: https://www.bruker.com/products/surface-and-dimensional-analysis/nanomechanical-test-instruments.html
28. Khrapova E.K., Ugolkov V.L., et al. Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexane-1 and acetone hydrogenation. Chem. Nano. Mat., 2020, P. 1–14.
29. Ankudinov A.V. A New Algorithm for Measuring the Young’s Modulus of Suspended Nanoobjects by the Bending-Based Test Method of Atomic Force Microscopy. Semiconductors, 2019, 53(14), P. 1891–1899.
30. Ankudinov A.V., Khalisov M.M. Contact Stiffness Measurements with an Atomic Force Microscope. Technical Physics, 2020, 65(11), P. 1866–1872.
31. Nečas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys., 2012, 10(1), P. 181–188.
32. Sader J.E., Chon J.W.M., Mulvaney P. Calibration of rectangular atomic force microscope cantilever. Rev. Sci. Instrum., 1999, 70, P. 3967–3969
33. Brewe D.E., Hamrock B.J. Simplified solution for elliptical contact deformation between two elastic solids. J. Lubrication Technology, 1977, 99 (4), P. 485–487.
34. Popov V.L., Heß M., Willert E. Handbook of Contact Mechanics. Exact Solutions of Axisymmetric Contact Problems. Translation from the German Language edition: Popov et al: Handbuch der Kontaktmechanik. Springer-Verlag GmbH Deutschland, 2018, 347 p.
Review
For citations:
Khalisov M.M., Lebedev V.A., Poluboyarinov A.S., Garshev A.V., Khrapova E.K., Krasilin A.A., Ankudinov A.V. Young’s modulus of phyllosilicate nanoscrolls measured by the AFM and by the in-situ TEM indentation. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):118-127. https://doi.org/10.17586/2220-8054-2021-12-1-118-127