Study of nonclassicality in fifth harmonic generation nonlinear optical process
https://doi.org/10.17586/2220-8054-2021-12-1-65-72
Abstract
We have examined non classical effect i.e. higher order single mode antibunching and intermodel antibunching and higher order sub-poissonian photon statistics (HOSPS) in fifth harmonic generation non linear optical process using short time interaction technique. We have found that nonclassical effects directly depend on number of photons prior to interaction with non linear medium. The higher the number of photons present prior to an interaction, the higher will be the nonclassicality in the system. It is additionally found that stoke mode doesn’t fulfill the condition of single mode antibunching and HOSPS in fifth harmonic generation process. To examine the optical nonlinearity of nanoparticles, there are significant research efforts concerning the estimation of higher order nonlinear susceptibility which can be utilized as a source for the generation of higher order harmonic generation nonlinear optical processes [19].
About the Authors
. PriyankaIndia
Kurukshetra 136119
Savita Gill
India
Kurukshetra 136119
References
1. Meystre P., Sargent M. Elements of Quantum Optics, 2nd edn, Berlin, Springer, 1991.
2. Dodonov V.V. Nonclassical states in quantum optics: a ‘squeezed’ review of the first 75 years. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4.
3. Hanbury Brown R., Twiss R. Q. Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497), P. 27-29.
4. Harrow Aram W., Montanaro A. Quantum computational supremacy. Nature, 2017, 549(7671), P. 203–209.
5. Neill C., Roushan P., Kechedzhi K., Boixo S., Isakov S.V., Smelyanskiy V., Megrant A., Chiaro B., Dunsworth A., Arya K. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 2018, 360(6385), P. 195–199.
6. Abbott B. P., Abbott R., Abbott T. D., Abernathy M. R., Acernese F., Ackley K., Adams C., Addesso P., Adhikari R. X. et al. Gw151226. Observation of gravitational waves from a 22-Solar mass binary black hole coalescence. Physical Review Letters, 2016, 116(24), P. 241103(1- 14).
7. Madsen L. S., Usenko V. C., Lassen M., Filip R., Andersen U.L. Continuous variable quantum key distribution with modulated entangled states. Nature communications, 2012, 3(1), P. 1038(1-6).
8. Bennett C.H. et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels. Physical Review Letters, 1993, 83(15), P. 3081– 3084.
9. Braunstein S.L., Kimble H.J. Dense coding for continous variables. Physical Review A, 2000, 61(4), P. 042302(1-4).
10. Braunstein et. al. Universal Teleportation with a Twist. Physical Review Letters, 2000, 84(15), P. 3486–3489.
11. Bachor H.A. A guide to experiments in quantum optics (Weinheim: Wiley-VCH) chapters 8 and 10.
12. Vogel W., Welsch D., Wallentowitz S. Quantum optics: an introduction 2nd edition. Berlin, Wiley-VCH, chapter 6.
13. Erenso D., Vyas R, Singh S. Higher-order sub-Poissonian photon statistics in terms of factorial moments. Journal of Optical Society B, 2002, 19(6), P. 1471–1475.
14. Vyas R., Singh S. Photon-counting statistics of the degenerate optical parametric oscillator. Physical Review A, 1989, 40(9), 5147–5159.
15. Kreibig U., Vollmer M. Optical properties of metal clusters. Springer Series in Materials Science, 1995, 25, P. 278–279.
16. Seongmin J.U., Wateker P.R., Jeong S. Nonlinear optical properties of zinc doped germane silicate glass optical fibre. Journal of Nonlinear Optical Physics and Materials, 2011, 19(4), P. 791–799.
17. Xie R.H. Handbook of advanced electronic and photonic materials and devices. H.S. Nalwa (Ed.), Elsevier, 2000, 9, P. 267–307.
18. Shuklina A.I., Smirnov A.V., Fedorov B.A., Kirillova S.A., Almjasheva O.V. Structure of nanoparticles in the ZrO2–Y2O3 system, as obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(6), P. 729–738.
19. Xie R.H., Rao Q., Ensen L. Encyclopedia of nanoscience and nanotechnology. Nalwa H.S., American Scientific, Los angles, 2003.
20. Roussignol P.H., Ricard D., Flytzanis C.H.R. Quantum confinement mediated enhancement of optical kerr effect in CdSx Se1−x semiconductor microcrystallites. Applied Physics B, 1990, 51(6), P. 437–442.
21. Hanamura E. Very large optical nonlinearity of semiconductor microcrystallites. Physical Review B, 1988, 37(3), P. 1273–1279.
22. Cotter D., Burt M.G., Manning R.J. Below-band-gap third-order optical nonlinearity of Nanometer-size semiconductor crystallites. Physical Review Letters, 1992, 68(8), P. 1200–1203.
23. Jni J., Yao J., Zeng B., Chu W., Li G., Zhang H., Jing C., Chin S. L., Cheng Y., Xu Z. Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses. Physics Review A, 2011, 84(5), P. 063846(1-4).
24. Ariunbold G.O., Polynkin P., Moloney J.V. Third and Fifth harmonic generation by tightly focused femtosecond pulses at 2.2 µm wavelength in air. Optics Express, 2012, 20(2), P. 1662–1667.
25. Kartashov D., Alisauskas S., Pugzlys A., Voronin A.A., Zheltikov A.M., Baltuska A. Third- and fifth-harmonic generation by mid-infrared ultrashort pulses: beyond the fifth- order nonlinearity. Optics Letter, 2012, 37(12), P. 2268–2270.
26. Nath A., Dharmadhikari J.A., Dharmadhikari A.K., Mathur D. Seventh harmonic generation from tightly focused 2 µm ultrashort pulses in air. Optics Letter, 2013, 38(14), P. 2560–2562.
27. Sperling J., Vogel W., Agarwal G.S. Quantum state engineering by click counting. Physical Review A, 2014, 89(4), P. P. 043829(1-10).
28. Hong C.K., Mandel L. Higher order squeezing of a quantum field. Physical Review Letters, 1985, 54(4), P. 323–325.
29. Hong C.K., Mandel L. Generation of higher order squeezing of quantum electromagnetic fields. Physical Review A, 1985, 32(2), P. 974–982.
30. Hillery M. Amplitude-squared squeezing of the electromagnetic field. Physical Review A, 1987, 36(8), P. 3796–3802.
31. Priyanka, Gill S. Comparison of non classical effects: quantum phase fluctuation, antibunching and minimum total noise in various non linear optical processes. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(2), P. 161–170.
32. Lee C.K. Higher order criteria for nonclassical effects in photon statistics. Physical Review A, 1990, 41(3), P. P. 1721–1723.
33. An B.N. Multimode higher order antibunching and squeezing in trio coherent states. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(3), P. 222–227.
34. Srinivasan R., Lee C.T. Shadowed negative binomial state. Physical Letter A, 1996, 218(3-6), P. 151–156.
35. Prakash H., Mishra D.K. Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(9), P. 2291–2297.
36. Pathak A. A mathematical criterion for single photon sources used in quantum cryptography. Indian Journal of Physics, 2006, 80(5), P. 495–499.
Review
For citations:
Priyanka , Gill S. Study of nonclassicality in fifth harmonic generation nonlinear optical process. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):65-72. https://doi.org/10.17586/2220-8054-2021-12-1-65-72