Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On the long-distance charge transport in DNA-like macromolecules

https://doi.org/10.17586/2220-8054-2021-12-1-32-41

Abstract

In this paper, we investigate the possibility of stable migration of charge carriers over long distances in DNA-like macromolecular structures in the form of an adiabatic soliton and derive the conditions for the formation of solitons. We find two types of soliton solutions: symmetric and antisymmetric. Comparing the energy of both types of soliton solutions with the energy of free extra charge, we find the region of the system parameters in which the soliton states are more energetically favorable than the states of quasi-free charges. At the same time, which of the two mentioned soliton solutions corresponds to an energetically favorable state depends on the ratio of the energy parameters of the molecular structure.

About the Authors

D. Chevizovich
University of Belgrade, Vinča Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics
Serbia

P.O. BOX 522, Belgrade, 11001



A. V. Chizhov
Laboratory of Radiation Biology, Joint Institute for Nuclear Research; Dubna State University
Russian Federation

Joliot-Curie, 6, Dubna, 141980; Universitetskaya, 19, Dubna, 141980



Z. Ivić
University of Belgrade, Vinča Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics
Serbia

P.O. BOX 522, Belgrade, 11001



A. A. Reshetnyak
Institute of Strength Physics and Materials Science SB RAS
Russian Federation

Academichesky ave., 2/4, Tomsk, 634021



References

1. Dekker C., Ratner M.A. Electronic properties of DNA. Phys. World, 2001, 14 (8), P. 29–33.

2. Rakovic D. Osnovi biofizike. IASC&IEFPG, Beograd, 2008, 368 p. (in Serbian).

3. Giese B. Long-Distance Charge Transport in DNA: The Hopping Mechanism. Acc. Chem. Res., 2000, 33 (9), P. 631–636.

4. Schuster G.B. Long-Range Charge Transfer in DNA: Transient Structural Distortions Control the Distance Dependence. Acc. Chem. Res., 2000, 33 (4), P. 253–260.

5. Heller A. Spiers Memorial Lecture. On the hypothesis of cathodic protection of genes. Faraday Discuss., 2000, 116, P. 1–13.

6. Davydov A.S. Solitons in molecular systems. Phys. Scr., 1979, 20 (2), P. 387–394.

7. Cevizovic D., Ivic Z., Przulj Z., Tekic J., Kapor D. Interchain coupling effects on large acoustic polaron in two parallel molecular chains. Chem. Phys., 2013, 426, P. 9–15.

8. Giese B. Electron transfer in DNA. Curr. Opin. Chem. Biol., 2002, 6 (5), P. 612–618.

9. Hawke L.G.D., Kalosakas G., Simserides C. Electronic parameters for charge transfer along DNA. Eur. Phys. J. E, 2010, 32 (3), P. 291–306.

10. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics, 1959, 8 (3), P. 325–342.

11. Cevizovic D., Ivic Z., Galovic S., Reshetnyak A., Chizhov A. On the vibron nature in the system of two parallel macromolecular chains: The influence of interchain coupling. Phys. B, 2016, 490, P. 9–15.

12. Rashba E.I. Self-trapping of excitons. Excitons, North-Holland, Amsterdam: 1982. P. 543–602.

13. Brown D.W., Ivic Z. Unification of polaron and soliton theories of exciton transport. Phys. Rev. B, 1989, 40 (14), P. 9876–9887.

14. Emin D. Self-trapping in quasi-one-dimensional solids. Phys. Rev. B, 1986, 33 (6), P. 3973–3975.

15. Yarkony D., Silbey R. Variational approach to exciton transport in molecular crystals. J. Chem. Phys., 1977, 67 (12), P. 5818–5827.

16. Lang I.G., Firsov Yu.A. Kinetic theory of semiconductors with low mobility. Soviet Physics JETP, 1963, 16 (5), P. 1301–1312.

17. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. Polaron normal modes in the Peyrard–Bishop–Holstein model. Phys. Rev. B, 2003, 68 (17), 174304 (11 p).

18. Kalosakas G. Charge transport in DNA: Dependence of diffusion coefficient on temperature and electron-phonon coupling constant. Phys. Rev. E, 2011, 84 (5), 051905 (6 p).

19. Baeriswyl D., Maki K. Interchain order, soliton confinement, and electron-hole photogeneration in trans-polyacetylene. Phys. Rev. B, 1988, 38 (12), P. 8135–8141.

20. Davydov A.S. Biologya i Kvantovaya Mehanika. Naukova Dumka, Kiev, 1979. P. 142–216. (In Russian).

21. Davydov A.S. The theory of contraction of proteins under their excitation. J. Theor. Biol., 1973, 38 (3), P. 559–569.

22. Emin D. On the existence of free and self-trapped carriers in insulators: an abrupt temperature-dependent conductivity transition. Adv. Phys., 1973, 22 (1), P. 57–116.

23. Pekar S.I. Issledovaniya po elektronnoi teorii kristaslov. Gostekhizdat, Moskva, 1951. 256 p. (in Russian).

24. Pekar S.I. Autolocalization of the electron in an inertially polarizable dielectric medium. Zh. Eksp. Teor. Fiz., 1946, 16, P. 335–343.

25. Zdravkovic S., Sataric M. Parameter selection in a Peyrard–Bishop–Dauxois model for DNA dynamics. Phys. Lett. A, 2009, 373 (31), P. 2739– 2745.

26. Kitoh–Nishioka H., Ando K. Charge–Transfer Matrix Elements by FMO-LCMO Approach: Hole Transfer in DNA with Parameter Tuned Range–Separated DFT. Chem. Phys. Lett., 2015, 621, P. 96–101.

27. Dauxois T., Peyrard M. Physics of Solitons. Cambridge University Press, Cambridge, 2004. 436 p.

28. Firsov Yu.A. Polarons. Ed. Yu. A. Firsov, Nauka, Moskva, 1975. 423 p. (in Russian).

29. Wang X., Brown D.W., Lindberg K., West B. Alternative formulation of Davydov theory of energy transport in biomolecular systems. Phys. Rev. A, 1988, 37 (9), P. 3557–3566.

30. Ivic Z., Zekovic S., Przulj Z. Radiative decay of the one-dimensional large acoustic polaron. Phys. Lett. A, 2002, 306 (2–3), P. 144–152.

31. Kevrekidis P.G., Frantzeskakis D.J., Carretero–Gonziez R. (Eds.) Emergent nonlinear phenomena in Bose–Einstein condensates. Springer, Berlin, 2008. 405 p.

32. Kivshar Yu.S., Agrawal G.P. Optical Solitons: From Fibers to Photonic crystals. Academic Press, New York: 2003. 540 p.

33. Shi X., Malomed B.A., Ye F., Chen X. Symmetric and asymmetric solitons in a nonlocal nonlinear coupler. Phys. Rev. A, 2012, 85 (5), 053839 (8 p).

34. Akhmediev N.N., Ostrovskaya E.A. Elliptically polarized spatial solitons in cubic gyrotropic materials. Opt. Commun., 1996, 132 (1–2), P. 190–204.


Review

For citations:


Chevizovich D., Chizhov A.V., Ivić Z., Reshetnyak A.A. On the long-distance charge transport in DNA-like macromolecules. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):32-41. https://doi.org/10.17586/2220-8054-2021-12-1-32-41

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)