Weak polarization-optical responses of diluted magnetic nanofluid probed by laser radiation with polarization modulation
https://doi.org/10.17586/2220-8054-2021-12-1-60-64
Abstract
A sensitive laser registration of weak polarization-optical responses was used for the investigations of dilute magnetic nanofluids. Criteria for weak and strong signals for probing of sample by laser radiation with deep modulation of polarization were considered. The magneto-optical responses of a kerosene-based fluid with magnetite nanoparticles were investigated over a wide (five orders of magnitude) range of concentrations. Weak polarization responses for this nanofluid were observed at record low volume concentrations of nanoparticles up to 10−7.
About the Authors
Ya. A. FofanovRussian Federation
26 Rizhsky ave., St. Petersburg, 190103, box 207
I. V. Pleshakov
Russian Federation
26 Politechnicheskaya str., St. Petersburg, 194021
A. V. Prokof’ev
Russian Federation
26 Politechnicheskaya str., St. Petersburg, 194021
E. E. Bibik
Russian Federation
26 Moskovsky ave., 190013, St. Petersburg
References
1. Scherer C., Figueiredo Neto A.M. Ferrofluids: Properties and applications. Braz. J. Phys., 2005, 35(3A), P. 718–727.
2. Skibin Yu.N., Chekanov V.V., Raker Yu.L. Birefringence in a ferromagnetic liquid. Sov. Phys. JETP, 1977, 45(3), P. 496–499.
3. Davis H.W., Llewellyn J.P. Magnetic birefringence of ferrofluids: I. Estimation of particle size. J. Phys. D: Appl. Phys., 1979, 12(2), P. 311– 319.
4. Scholten P.C. The origin of magnetic birefringence and dichroism in magnetic field. IEEE Trans. Magn., 1980, 16(2), P. 221–225.
5. Zhao Y., Lv R., Zhang Y., Wang Q. Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Opt. Lasers Eng., 2012, 50(9), P. 1177–1184.
6. Badoz J., Billardon M., Canit J.C., Russel M.F., Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator. J. Opt., 1977, 8(6), P. 373–384.
7. Jasperson S.N., Schnatterly S.E. An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev. Sci. Instrum., 1969, 40(6), P. 761–767.
8. Shindo Y., Mizuno K., Sudani M., Hayakawa H., Ohmi Y., Sakayanagi N., Takeuchi N. New polarization-modulation spectrometer for simultaneous circular dishroism and optical rotatory dispersion measurements. II. Design, analysis, and evaluation of prototype model. Rev. Sci. Instrum., 1989, 60(12), P. 3633–3639.
9. Acher O., Bigan E., Drevillon B. Improvements of phase-modulated ellipsometry. Rev. Sci. Instrum., 1989, 60(1), P. 65–77.
10. Gupta V.K., Kornfield J.A., Ferencz A., Wegner G. Controlling molecular order in “Hairy-rod” Langmuir-Blodgett films: A polarization-modulation microscopy study. Science, 1994, 265(5174), P. 940–942.
11. Shindo Y., Kani K., Horinaka J., Kuroda R., Harada T. The application of polarization modulation method to investigate the optical homo-geneity of polymer films. J. Plast. Film Sheeting, 2001, 17(2), P. 164–183.
12. Osborn K.D., Singh M.K., Urbauer R.J.B., Johnson C.K. Maximum-likelihood approach to single-molecule polarization modulation analysis. ChemPhysChem, 2003, 4(9), P. 1005–1011.
13. Fofanov Ya.A. Threshold sensitivity in optical measurements with phase modulation. Proceedings of the Conference. Tenth All-Union Symposium and School on High-Resolution Molecular Spectroscopy. Proc. SPIE, 1992, 1811, P. 413–414.
14. Fofanov Ya.A., Sokolov I.M., Pleshakov I.V., Vetrov V.N., Prokofiev A.V., Kuraptsev A.C., Bibik E.E. On the criteria for strong and weak polarization responses of ordered objects and systems. Proceedings of the XI International Symposium on Photon Echo and Coherent Spectroscopy (PECS-2017), Svetlogorsk (Russia), 2017, EPJ Web Conf., 161, P. 01003.
15. Fofanov Ya., Vetrov V., Ignatenkov B. Laser polarization-optical sounding of optical crystals and ceramics. Proceedings of 2018 International Conference Laser Optics (ICLO), St. Petersburg, 2018, P. 406–406,
16. Sokolov I.M., Fofanov Ya.A. Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation. J. Opt. Soc. Am. A., 1995, 12(7), P. 1579–1588.
17. Fofanov Ya.A., Pleshakov I.V., Kuz’min Yu. I. Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal. J. Opt. Technol., 2013, 80(1), P. 64–67.
18. Fofanov Ya.A., Pleshakov I.V., Prokof’ev A.V., Bibik E.E. Investigation of polarization magnetooptic responses of a low-concentration ferrofluid. Tech. Phys. Lett., 2016, 42(10), P. 1054–1056.
19. Fofanov Ya.A. Nonlinear and fluctuation phenomena under conditions of strong selective reflection in inclined geometry. In Advances in Optoelectronics Research. Nova Science Publishers, USA, 2014, P. 75–114.
20. Klyshko D.N., Masalov A.V. Photon noise: observation, squeezing, interpretation. Phys.-Uspekhi, 1995, 38(11), 1203–1230.
21. Sokolov I.M., Fofanov Ya.A. Suppression of excess noise of polarization-modulated probe light in measurements of weak optical birefringence. Optics and spectroscopy, 1999, 86(5), P. 745–752.
22. Bibik E.E., Matygullin B.Ya., Raikher Yu.L., Shliomis M.I. Magnetostatic properties of magnetite colloids. Magnetohydrodynamics, 1973, 9(1), P. 58–62.
23. Prokof’ev A.V., Pleshakov I.V., Bibik E.E., Kuz’min Yu.I. An optical investigation of the geometric characteristics of aggregates formed by particles of magnetic fluid. Tech. Phys. Lett., 2017, 43(2), P. 194–196.
24. Fofanov Ya.A., Manoilov V.V., Zarutskii I.V., Kuraptsev A.S. Statistical analysis of the data of highly sensitive laser polarization-optical probing of magnetic nanofluids. J. Opt. Technol., 2020, 87(2), P. 94–99.
25. Fofanov Ya.A., Manoylov V.V., Zarutskiy I.V., Kuraptsev A.S. Laser polarization-optical diagnostics of ordered objects and structures. Bull. Russ. Acad. Sci.: Phys., 2020, 84(3), P. 263–266.
Review
For citations:
Fofanov Ya.A., Pleshakov I.V., Prokof’ev A.V., Bibik E.E. Weak polarization-optical responses of diluted magnetic nanofluid probed by laser radiation with polarization modulation. Nanosystems: Physics, Chemistry, Mathematics. 2021;12(1):60-64. https://doi.org/10.17586/2220-8054-2021-12-1-60-64