Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

A facile low-temperature deposition of Sn-rich tin (II) monosulfide colloid particles

https://doi.org/10.17586/2220-8054-2020-11-5-529-536

Abstract

A novel, eco-friendly and low temperature synthesis of tin (II) monosulfide colloid particles is described. Chemical bath deposition was successfully applied for the deposition of polynanocrystalline SnS from acidic aqueous solutions. The characterization of the prepared samples was accomplished through elemental analysis, scanning electron microscopy, X-ray powder diffraction, and optical spectroscopy. The composition of tin (II) monosulfide colloids assembled of nanoparticles was found to be Sn-rich. Several simple scenarios for Sn surplus within SnS lattice (Svacancies at S-sublattice, Sn-atoms intercalated between SnS layers and Sn-doping of S-sites) have been analyzed by means of quantum chemical calculations. The potential application of the Sn1+xS colloid particles in solar cells as absorber material and as photocatalyst was demonstrated by measuring the optical properties.

About the Authors

N. S. Kozhevnikova
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



L. N. Maskaeva
Ural Federal University named B. N. Yeltsin; Ural Institute of State Fire Service of EMERCOM of Russia
Russian Federation

Mira, 9, Ekaterinburg, 620002

Mira str. 22, 620062, Ekaterinburg 



E. E. Lekomtseva
Ural Federal University named B. N. Yeltsin
Russian Federation

Mira, 9, Ekaterinburg, 620002



L. A. Pasechnik
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



A. Yu. Chufarov
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



O. A. Lipina
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



A. N. Enyashin
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation

Pervomayskaya, 91, Ekaterinburg, 620990



V. F. Markov
Ural Federal University named B. N. Yeltsin; Ural Institute of State Fire Service of EMERCOM of Russia
Russian Federation

Mira, 9, Ekaterinburg, 620002

Mira str. 22, 620062, Ekaterinburg 



References

1. Reddy K.T.R., Reddy N.K., Miles R.W. Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells, 2006, 90, P. 3041–3046.

2. Noguchi H., Setiyadi A., Tanamura H., Nagatomo T., Omoto O. Characterization of vacuum-evaporated tin sulfide film for solar-cell materials. Sol. Energy Mater. Sol. Cells, 1994, 35(1-4), P. 325–331.

3. Mathews N.R., Anaya H.B.M., Cortes-Jacome M.A., Angeles-Chavez C., Toledo-Antonio J. A. Tin sulfide thin films by pulse electrodeposition: structural, morphological, and optical properties. J. Electrochem. Soc., 2010, 157(3), P. H337–H341.

4. Kabouche S., Bellal B., Louafi Y., Trari M. Synthesis and semiconducting properties of tin(II) sulfide: Application to photocatalytic degradation of Rhodamine B under sun light. Materials Chem. Phys., 2017, 195, P. 229–235.

5. Gao W., Wu C., Cao M., Huang J., Wang L., Shen Y. Thickness tunable SnS nanosheets for photoelectrochemical water splitting. J. Alloys and Compounds, 2016, 688, P. 668–674.

6. Schneikart A., Schimper H.-J., Klein A., Jaegermann W. Efficiency limitations of thermally evaporated thin-film SnS solar cells. J. Phys. D: Appl. Phys., 2013, 46(30), P. 305109.

7. Hartman K., Johnson J.L., Bertoni M.I., Recht D., Aziz M.J., Scarpulla M.A., Buonassisi T. SnS thin-films by RF sputtering at room temperature. Thin Solid Films, 2011, 519, P. 7421–7424.

8. Wangperawong A., Herron S.M., Runser R.R., Haagglund C., Tanskanen J.T., Lee H., Clemens B.M., Bent S.F. Vapor transport deposition and epitaxy of orthorhombic SnS on glass and NaCl substrates. Appl. Phys. Lett., 2013, 103, P. 052105.

9. Sinsermsuksakul P., Heo J., Noh W., Hock A.S., Gordon R.G. Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater., 2011, 1, P. 1116–1125.

10. Ballipinar F., Rastogi A.C. Tin sulfide (SnS) semiconductor photo-absorber thin films for solar cells by vapor phase sulfurization of Sn metallic layers using organic sulfur source. J. Alloys and Compounds, 2017, 728, P. 179-188.

11. Sajeesh T.H., Warrier A.R., Kartha C.S., Vijayakumar K.P. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS. Thin Solid Films, 2010, 518, P. 4370–4374.

12. Takeuchia K., Ichimuraa M., Araia E., Yamazaki Y. SnS thin films fabricated by pulsed and normal electrochemical deposition. Sol. Energy Mater. Sol. Cells, 2003, 75, P. 427–432.

13. Pramanik P., Basu P.K., Biswas S. Preparation and characterization of chemically deposited tin(II) sulphide thin films. Thin Solid Films, 1987, 150(2-3), P. 269–276.

14. Avelllaneda D., Nair M.T.S., Nair P.K. Polymorphic tin sulfide thin films of zinc blende and orthorhombic structures by chemical deposition. J. Electrochem. Soc., 2008, 155, P. D517–D525.

15. Han Q., Wang M., Zhu J., Wu X., Lu L., Wang X. Great influence of a small amount of capping agents on the morphology of SnS particles using xanthate as precursor. J. Alloys and Compounds, 2011, 509(5), P. 2180–2185.

16. Ordejon P., Artacho E., Soler J.M., Self-consistent order-N denisity-functional calculations for very large systems. Phys. Rev. B, 1996, 53, P. R10441.

17. Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter, 2002, 14, P. 2745–2780.

18. Markov V.F., Maskaeva L.N., Ivanov P.N. Hydrochemical deposition of metal sulfide thin solid films: modeling and experiment. Ekaterinburg: UrB RAS, 2006, 217 p. (in Russian)

19. Lurie Ju.Ju. Handbook of Analytical Chemistry. Mir Publishers, 1975, 488 p.

20. Gomes L.C., Carvalho A. Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev., 2015, B92(8), P. 085406.

21. Titova L.V., Fregoso B.M., Grimm R.L. Chapter 5: Group-IV monochalcogenides GeS, GeSe, SnS, SnSe, in book Chalcogenide: From 3D to 2D and Beyond. Woodhead Publishing Series in Electronic and Optical Materials, 2020, P. 119-151.

22. Popov I.S., Kozhevnikova N.S., Enyashin A.N. Quantum-chemical study of structural and electronic properties of a new tin monosulfide polymorph π-SnS. Doklady Physical Chemistry, 2017, 472(2), P. 23–26.

23. Kubelka P., Munk-Aussig F. Ein Beitrag zur Optik der. Farbanstriche. Z. Tech. Physik, 1931, 12, P. 593–601.

24. Reddy N.K., Hahn Y.B. Temperature-dependent structural and optical properties of SnS films. J. Appl. Phys., 2007, 101(9), P. 093522.

25. Parenteau M., Carlone C. Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors. Phys. Rev. B, 1990, 41(8), P. 5227–5234.

26. Lopez S., Granados S., Ortiz A. Semicond. Spray pyrolysis deposition of Sn2S3 thin films. Sci. Technol., 1996, 11(3), P. 433–436.

27. Zhang J., Cao D.,Wu Y., Cheng X., Kang W., Xu J. Phase transformation and sulfur vacancy modulation of 2D layered tin sulfide nanoplates as highly durable anodes for pseudocapacitive lithium storage. Chemical Engineering J., 2020, 392, P. 123722(1-10).


Review

For citations:


Kozhevnikova N.S., Maskaeva L.N., Lekomtseva E.E., Pasechnik L.A., Chufarov A.Yu., Lipina O.A., Enyashin A.N., Markov V.F. A facile low-temperature deposition of Sn-rich tin (II) monosulfide colloid particles. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):529–536. https://doi.org/10.17586/2220-8054-2020-11-5-529-536

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)