Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

HRTEM, XPS and XRD characterization of ZnS/PbS nanorods prepared by thermal evaporation technique

https://doi.org/10.17586/2220-8054-2020-11-5-537-545

Abstract

Zinc sulfide (ZnS) and zinc sulfide/lead sulfide (ZnS/PbS) nanorods were grown on glass substrates using a thermal evaporation method. The morphology of the prepared samples has been studied by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and Scanning Electron Microscopy (SEM). Both differences and similarities in morphology between the samples have been discovered. In the ZnS/PbS sample, ZnS nanorods were formed with diameter less than 50 nm and length between 2000 and 3000 nm. The pure ZnS sample has dense structure and its thickness was about 200 nm. Samples were studied in detail using energy-dispersive X-ray spectroscopy (EDX). The surface chemical compositions of the samples were confirmed by means of X-ray photoelectron spectroscopy (XPS). The determination of the crystal structure using the X-ray diffraction revealed that two phases of ZnS, blende and wurtzite, are present in the sample after adding Pb, while only blende is identified in the pure ZnS sample.

About the Authors

B. Abadllah

Syrian Arab Republic

P.O. Box 6091, Damascus



B. Assfour
Atomic Energy Commission, Department of chemistry
Syrian Arab Republic

P.O. Box 6091, Damascus



M. Kakhia

Syrian Arab Republic

P.O. Box 6091, Damascus



Ali Bumajdad
Chemistry Department, Faculty of Science, Kuwait University
Kuwait

Safat 13060



References

1. Huang X., Wang M., Willinger M.-G., Shao L., Su D.S., Meng X.-M. Assembly of Three-Dimensional Hetero-Epitaxial ZnO/ZnS Core/Shell Nanorod and Single Crystalline Hollow ZnS Nanotube Arrays. ACS Nano, 2012, 6(8), P. 7333-9.

2. Leftheriotis G., Papaefthimiou S., Yianoulis P. Integrated low-emittance-electrochromic devices incorporating ZnS/Ag/ZnS coatings as transparent conductors. Solar Energy Materials and Solar Cells, 2000, 61(2), P. 107-12.

3. Kavanagh Y., Alam M.J., Cameron D.C. The characteristics of thin film electroluminescent displays produced using sol-gel produced tantalum pentoxide and zinc sulfide. Thin Solid Films, 2004, 447-448, P. 85-9.

4. Wan H., Xu L., Huang W.-Q., Huang G.-F., He C.-N., Zhou J.-H., et al. Band engineering of ZnS by codoping for visible-light photocatalysis. Applied Physics A, 2014, 116(2), P. 741-50.

5. Nizamoglu S., Ozel T., Sari E., Demir H.V. White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology, 2007, 18(6), P. 065709.

6. Bae W.K., Kwak J., Park J.W., Char K., Lee C., Lee S. Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient. Advanced Materials, 2009, 21(17), P. 1690-4.

7. Wang L., He W., Xiao X., Meng F., Zhang Y., Yang P., et al. Hysteresis-Free Blue Phase Liquid-Crystal-Stabilized by ZnS Nanoparticles. Small, 2012, 8(14), P. 2189-93.

8. Samadpour M. Efficient CdS/CdSe/ZnS quantum dot sensitized solar cells prepared by ZnS treatment from methanol solvent. Solar Energy, 2017, 144, P. 63–70.

9. Diamond A.M., Corbellini L., Balasubramaniam K.R., Chen S., Wang S., Matthews T.S., et al. Copper-alloyed ZnS as a p-type transparent conducting material. Physica status solidi(a), 2012, 209(11), P. 2101-7.

10. Shin S.W., Pawar S.M., Park C.Y., Yun J.H., Moon J.-H., Kim J.H., et al. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12), P. 3202-6.

11. Benyahia K., Benhaya A., Aida M.S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. Journal of Semiconductors, 2015, 36(10), P. 103001.

12. Haque F., Rahman K.S., Islam M.A., Chelvanathan P., Chowdhury T.H., Alam M.M., et al., editors. A Comparative Study on ZnS Thin Films Grown by Thermal Evaporation and Magnetron Sputtering. IEEE Student Conference on Research and Development (SCOReD), 16–17 December, 2013, Putrajaya, Malaysia.

13. Jazmati A.K., Abdallah B., Lahlah F., Shaker S.A. Photoluminescence and optical response of ZnO films deposited on silicon and glass substrates. 2019.

14. Abdallah B., Ismail A., Kashoua H., Zetoun W. Effects of Deposition Time on the Morphology, Structure, and Optical Properties of PbS Thin Films Prepared by Chemical Bath Deposition. Journal of Nanomaterials, 2018, 2018, P. 8.

15. Alnama K., Abdallah B., Kanaan S. Deposition of ZnS thin film by ultrasonic spray pyrolysis: effect of thickness on the crystallographic and electrical properties. Composite Interfaces, 2017, 24(5), P. 499–513.

16. Abdallah B., Alnama K., Nasrallah F. Deposition of ZnS thin films by electron beam evaporation technique, effect of thickness on the crystallographic and optical properties. Modern Physics Letters B, 2019, 33(04), P. 1950034.

17. Basak A., Hati A., Mondal A., Singh U.P., Taheruddin S.K. Effect of substrate on the structural, optical and electrical properties of SnS thin films grown by thermal evaporation method. Thin Solid Films, 2018, 645, P. 97–101.

18. Abdallah B., Duquenne C., Besland M.P., Gautron E., Jouan P.Y., Tessier P.Y., et al. Thickness and substrate effects on AlN thin film growth at room temperature. The European Physical Journal – Applied Physics, 2008, 43(3), P. 309-13.

19. Rahmane S., Abdallah B., Soussou A., Gautron E., Jouan P.-Y., Le Brizoual L., et al. Epitaxial growth of ZnO thin films on AlN substrates deposited at low temperature by magnetron sputtering. physica status solidi (a), 2010, 207(7), P. 1604-8.

20. Abdallah B., Rihawy M.S. Ion beam measurements for the investigation of TiN thin films deposited on different substrates by vacuum arc discharge. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 441, P. 33-40.

21. Al-Jawad SMH, Ismail MM. Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles. J Opt Technol. 2017;84(7):495-9.

22. Wu M., Zhiqiang W., Zhao W., Wang X., Jiang J. Optical and Magnetic Properties of Ni Doped ZnS Diluted Magnetic Semiconductors Synthesized by Hydrothermal Method. Journal of Nanomaterials, 2017, 2017, P. 1-9.

23. Attaf A., Derbali A., Saidi H., Benamra H., Aida M.S., Attaf N., et al. Physical properties of Pb doped ZnS thin films prepared by ultrasonic spray technique. Physics Letters A, 2019, P. 126199.

24. Dixit N., Vaghasia J.V., Soni S.S., Sarkar M., Chavda M., Agrawal N., et al. Photocatalytic activity of Fe doped ZnS nanoparticles and carrier mediated ferromagnetism. Journal of Environmental Chemical Engineering, 2015, 3(3), P. 1691–701.

25. Ahmad Z., Abdallah B. Controllability Analysis of Reactive Magnetron Sputtering Process. Acta Physica Polonica A, 2013, 123, P. 3.

26. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW COD. Journal of Applied Crystallography, 2015, 48(2), P. 598–603.

27. Toby B.H., Von Dreele R.B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46(2), P. 544-9.

28. Cheon J., Talaga D.S., Zink J.I. Photochemical Deposition of ZnS from the Gas Phase and Simultaneous Luminescence Detection of Photofragments from a Single-Source Precursor, Zn(S2COCHMe2)2. Journal of the American Chemical Society, 1997, 119(1), P. 163-8.

29. Barreca D., Gasparotto A., Maragno C., Tondello E., Spalding T.R. Analysis of nanocrystalline ZnS thin films by XPS. Surf Sci Spectra. 2002, 9, P. 51–64.

30. Burungale V., Devan R., Pawar S., Harale N., Patil V., Rao V., et al. Chemically synthesized PbS Nano particulate thin films for a rapid NO2 gas sensor. MATERIALS SCIENCE-POLAND, 2015, 34.

31. Zatsepin D.A., Boukhvalov D.W., Gavrilov N.V., Kurmaev E.Z., Zatsepin A.F., Cui L., et al. XPS-and-DFT analyses of the Pb 4f - Zn 3s and Pb 5d - O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite. Applied Surface Science, 2017, 405, P. 129–36.

32. Langer D.W., Vesely C.J. Electronic Core Levels of Zinc Chalcogenides. Physical Review B, 1970, 2(12), P. 4885-92.

33. Battistoni C., Paparazzo E., Dumond Y., Nogues M. X-ray photoelectron spectra of the spinel systems CdCrxIn2–xS4. Solid State Communications, 1983, 46(4), P. 333-6.

34. Barreca D., Tondello E., Lydon D., Spalding T.R., Fabrizio M. Single-Source Chemical Vapor Deposition of Zinc Sulfide-Based Thin Films from Zinc bis(O-ethylxanthate). Chemical Vapor Deposition, 2003, 9(2), P. 93-8.

35. Briggs D. Handbook of X-ray Photoelectron Spectroscopy C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E.Muilenberg PerkinElmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979, 190, P. 195. Surface and Interface Analysis, 1981, 3(4).

36. Li Z., Liu B., Li X., Yu S., Wang L., Hou Y., et al. Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property. Nanotechnology, 2007, 18(25), P. 255602.

37. Yao T. Zinc Oxide. In: Buschow KHJr, Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., Mahajan S., et al., editors. Encyclopedia of Materials: Science and Technology, 2001, P. 9883-7.

38. Karan N.S., Sarkar S., Sarma D.D., Kundu P., Ravishankar N., Pradhan N. Thermally Controlled Cyclic Insertion/Ejection of Dopant Ions and Reversible Zinc Blende/Wurtzite Phase Changes in ZnS Nanostructures. Journal of the American Chemical Society, 2011, 133(6), P. 1666-9.

39. Joyce H.J., Wong-Leung J., Gao Q., Tan H.H., Jagadish C. Phase Perfection in Zinc Blende and Wurtzite III-V Nanowires Using Basic Growth Parameters. Nano Letters, 2010, 10(3), P. 908-15.

40. D’Amico P., Calzolari A., Ruini A., Catellani A. New energy with ZnS: novel applications for a standard transparent compound. Scientific Reports, 2017, 7(1), P. 16805.


Review

For citations:


Abadllah B., Assfour B., Kakhia M., Bumajdad A. HRTEM, XPS and XRD characterization of ZnS/PbS nanorods prepared by thermal evaporation technique. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):537–545. https://doi.org/10.17586/2220-8054-2020-11-5-537-545

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)