Stability and electronic properties of ZnSe nanowires: An ab initio approach
https://doi.org/10.17586/2220-8054-2020-11-5-546-552
Abstract
The presented work revolves around exploration of the structural dependence of electronic properties of zinc selenide nanowire. For this purpose the shapes under consideration are 2 atom linear wire, 2 atom zigzag wire, 4 atom square wire and 6 atom hexagonal wire for zinc selenide. ABINIT code has been used for the study. The band structure, geometrical optimization and stability of proposed structures have been studied. A 4 atom square nanowire structure has come out to be comparatively more stable than other proposed structures while the findings of the study for band structure reveals that zinc selenide nanowires may have conducting, semi conducting or insulating nature which depends on the proposed geometry of the nanowire.
About the Authors
Sanjay Prakash KaushikIndia
Gurugram – 122103
Satyendra Singh
India
Nawalgarh – 333042
Ram-Krishna Thakur
India
Gurugram – 122103
References
1. LiD., Wu Y., et al. Thermal Conductivity of individual silicon nanowires. Applied Physics Letter, 2003, 83 (14), P. 2934–2936.
2. Tian B., Zheng X., et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449 (7164), P. 885–889.
3. Andrew B.G., Lincoln J.L., Mark S.G., Charles M.L. Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letter, 2004, 84 (21), P. 4176–4178.
4. Chen S.H, Wang S.J.J, Lo C.J., Chi J.Y. White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Applied Physics Letter, 2005, 86 (13), 131905.
5. Vigue F., Tournie E., Faurie J.P. ZnSe-based Schottky barrier photodetectors. Electronic Letters, 2000, 36 (4), 352.
6. Nasieka l., Boyko M., et al. Optical characterization of Er-doped ZnSe for scintillation applications. Optical Materials, 2014, 38, P. 272–277.
7. Ye C., Fang X., et al. Structural characterization of long ZnSe nanowires. Applied Physics A, 2004, 79 (1), P. 113–115.
8. Panda A.B., Acharya S., Efrima S. Ultranarrow ZnSe Nanorodsand Nanowires: Structure, Spectroscopy, and One-Dimensional Properties. Advanced Material, 2005, 17 (20), P. 2471–2474.
9. Singh S., Srivastva P. Ab-initio Study of the Structural Stability and Electronic Properties of ZnO Nanowires. Proceedings of fifth international conference “Communication systems and network technologies”, 2015, Gwalior, India, April 4–6, 2015, P. 1279–1283.
10. Philipose U., Ruda H.E., et al. Conducticity and photoconductivity in undoped ZnSe array. Journal of Applied Physics, 2006, 99 (6), 066106.
11. Cheng C.L., Chen Y.F. Low temperature synthesis of ZnSe nanowires by self-catalytic liquid-solid growth. Material Chemistry and Physics, 2009, 115 (1), P. 158–160.
12. Archana J., Navaneethan M., et al. Chemical synthesis of monodispersed ZnSe nanowire and its functional properties. Material Letters, 2012, 81, P. 59–61.
13. Benstaali W., Bentala S., Abbad A., Belaidi A. Ab-initio study of magnetic, electronic and optical properties of ZnSe doped transition metals. Material Science in Semiconductor Processing, 2013, 16 (2), P. 231–237.
14. Arya S., Khan S., et al. Electrical properties of electrodeposited zinc selenide (ZnSe) nanowires. Journal of Material Science, 2014, 25 (9), P. 4150–4155.
15. Nasieka I., Bokyo M., et al. Optical charecterisation of Er doped ZnSe for scintillation application. Optical Materials, 2014, 38, P. 272–277.
16. Oksenberg E., Popovitz- Biro R., Rechav K., Joselevich E. Guided growth of Horizontal ZnSe Nanowires and their integration into high performance blue-UV Photodetectors. Advanced Material, 2015, 27 (27), P. 3999–4005.
17. Zhang Y., Feng G., et al. Firrst principles study of the electronic structures and optical properties of Cr2+ doped ZnSe as a function of impurity concentration. Physica Status Solidi (b), 2016, 253 (6), P. 1133–1137.
18. Li D., Xing G., et al. Ultrathin ZnSe nanowires: one pot synthesis via a heat triggered precursor slow releasing route, controllable Mn doping and application in UV and near visible light detection. Nanoscale, 2017, 9, P. 15044–15055.
19. Wisniewski D., Byrne K., et al. Fingerprinting Electronic Structure in Nanomaterials: A Methodology Illustrated by ZnSe Nanowires. Nano Letters, 2019, 19 (4), P. 2259–2266.
20. Hohonberg P., Kohn W. Inhomogeneous Electron Gas. Physical Review B, 1964, 136, P. 864–866.
21. Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review A, 1965, 140 (4), A1133–A1138.
22. Martin R.M. Electronic Structure, Cambridge University Press, Cambridge, 2009.
23. Gonze X., Beuken J.M., et al. First-principles computation of material properties: the ABINIT software project. Computational Material Science, 2002, 25, 478.
24. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letter, 1996, 77 (18), P. 3865–3868.
25. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations. Physical Review B, 1991, 43 (3), P. 1993–2006.
26. Monkhorstand H.J., Pack J.D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13 (12), P. 5188–5192.
27. Srivastava P., Singh S., Mishra A. Stability and Electronic Properties of GaN Nanowires – An Ab-Initio Approach. Journal of Computational & Theoretical Nanoscience, 2008, 5 (4), P. 635–638.
28. Srivastava P., Singh S. Linear & Second-order optical response of different GaN Nanowires. Physica E, 2008, 40 (8), P. 2742–2746.
29. Singh S., Srivastava P., Mishra A. Ab-initio study of Gallium Arsenide Nanowires. Journal of Computational & Theoretical Nanoscience, 2009, 6 (7), P. 1556–1560.
30. Singh S.S., Srivastava P., Mishra A. Structural Stability and Electronic Properties of GaSb nanowires. Physica E, 2009, 42 (1), P. 46–50.
31. Srivastava P., Singh S., Mishra A. Electronic Properties of GaP Nanowires of Different Shapes. Journal of Nanoscience and Nanotechnology, 2011, 11 (12), P. 10464–10469.
32. Srivastava P., Singh S. Stability Analysis of AlN Nanowire. Journal of Computational & Theoretical Nanoscience, 2011, 8 (9), P. 1764–1768.
33. Singh S., Srivastava P. Optical properties of gallium phosphide (GaP) Nanowires. Applied Nanoscience, 2013, 3 (2), P. 89–94.
34. Singh S., Srivastava P. Linear and Nonlinear optical properties of GaAs Nanowires. Applied Nanoscience, 2015, 5 (3), P. 273–279.
35. Singh S., Kaushik S.P., Supreet. Ab initio study of Electronic Properties of Cadmium Sulphide Nanowires. J. Comput. Theor. Nanosci., 2020, 17 (2/3), P. 546–551.
Review
For citations:
Kaushik S., Singh S., Thakur R. Stability and electronic properties of ZnSe nanowires: An ab initio approach. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):546–552. https://doi.org/10.17586/2220-8054-2020-11-5-546-552