Nanotexture effect of the fiber surface on the sorption capacity of nonwoven fabrics
https://doi.org/10.17586/2220-8054-2020-11-5-553-564
Abstract
An approach to structural and functional modelling of the oxyfluorinated nonwovens based composite materials has been developed. The structural component of the model is presented in the form of integral and differential characteristic functions of the planar heterogeneity. The correlation analysis methods revealed the existence of links between the latex sorption capacities and the nanostructural characteristics of the experimental samples’ SEM-images. The obtained functional-structural model allows us to quantify the expected values of sorption capacities of the nonwoven fiber materials under the certain restrictions on the chemical compositions of the impregnating mixtures.
About the Authors
Yu. V. RudyaRussian Federation
38 B. Semenovskya str., Moscow 107023
F. A. Doronin
Russian Federation
38 B. Semenovskya str., Moscow 107023
G. O. Rytikov
Russian Federation
38 B. Semenovskya str., Moscow 107023
99 Ryazansky pr., Moscow 109542
E. K. Filyugina
Russian Federation
20, Myasnitskaya Street, Moscow 101000
V. G. Nazarov
Russian Federation
38 B. Semenovskya str., Moscow 107023
References
1. Li Y., Ma T., Yang S.T., Kniss D.A. Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds. Biomaterials, 2001, 22(6), P. 609–618.
2. Hyde G.K., Scarel G., Peng Q., Lee K., Gong B., Roberts K.G., Roth K.M., Hanson C.A., Devine C.K., Stewart S.M., Hojo D., Na J.-S., Jur J.S., Parsons G.N., Spagnola J.C. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir: the ACS journal of surfaces and colloids, 2010, 26(4), P. 2550–2558.
3. Du D., Li P., Ouyang J. Graphene coated nonwoven fabrics as wearable sensors. Journal of Materials Chemistry C, 2016, 4(15), P. 3224–3230.
4. Smirnov A.V., Genis A.V. Effect of process parameters on the structure and physicomechanical properties of nonwoven materials manufactured by aerodynamic spinning from polymer solution. Fibre Chemistry, 2002, 34(6), P. 400–406.
5. Kumar A., Gaurav, Malik A.K., Tewary D.K., Singh B. A review on development of solid phase microextraction fibers by sol-gel methods and their applications. Analytica Chimica Acta, 2008, 610(1), P. 1–14.
6. Bolbasov E.N., Stankevich K.S., Sudarev E.A., Kudryavtseva V.L., Tverdokhlebov S.I., Bouznik V.M., Antonova L.V., Matveeva V.G., Anissimov Y.G. The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride - tetrafluoroethylene copolymer. Materials Chemistry and Physics, 2016, 182, P. 338–346.
7. Moheman A., Alam M.S., Mohammad A. Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography. Advances in Colloid and Interface Science, 2016, 229, P. 1–24.
8. Bao L., Wang Y., Wakatsuki K., Morikawa H., Baba T., Fukuda Y. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material. Industrial Health, 2017, 55(6), P. 513–520.
9. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 1997, 23(1-3), P. 3–25.
10. Ng E.P., Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 2008, 114(1-3), P. 1–26.
11. Liu K., Jiang L., Yao X. Recent developments in bio-inspired special wettability. Chemical Society Reviews, 2010, 39(8), P. 3240–3255.
12. Hes L., de Araujo M., Djulay V.V. Effect of mutual bonding of textile layers on thermal insulation and thermal contact properties of fabric assemblies. Textile Research Journal, 1996, 66(4), P. 245–250.
13. Tovmash A.V., Polevov V.N., Mamagulashvili V.G., Chernyaeva G.A., Shepelev A.D. Fabrication of sorption-filtering nonwoven material from ultrafine polyvinyl alcohol carbonized fibres by electrospinning. Fibre Chemistry, 2005, 37(3), P. 187–191.
14. Radetic M.M., Jocic D.M., Jovancic P.M., Petrovic Z.Lj., Thomas H.F. Recycled wool-based nonwoven material as an oil sorbent. Environmental Science and Technology, 2003, 37(5), P. 1008.
15. Prorokova N.P., Istratkin V.A., Kumeeva T.Y., Vavilova S.Y., Kharitonov A.P., Bouznik V.M. Improvement of polypropylene nonwoven fabric antibacterial properties by the direct fluorination. RSC Advances, 2015, 5(55), P. 44545–44549.
16. Bondar Y.V., Kim H.J., Lim Y.J. Sulfonation of (glycidyl methacrylate) chains grafted onto nonwoven polypropylene fabric. Journal of Applied Polymer Science, 2007, 104(5), P. 3256–3260.
17. Poncin-Epaillard F., Brosse J.C., Falher T. Cold plasma treatment: surface or bulk modification of polymer films. Macromolecules, 1997, 30(15), P. 4415–4420.
18. Dedov A.V., Nazarov V.G. Processed nonwoven needlepunched materials with increased strength. Fibre Chemistry, 2015, 47(2), P. 121–125.
19. Isaev E.A., Pervukhin D.V., Kornilov V.V., Tarasov P.A., Grigoriev A.A., Rudyak Yu.V., Rytikov G.O., Nazarov V.G. Platelet adhesion quantification to fluorinated polyethylene from the structural characteristics of its surface. Mathematical biology and bioinformatics, 2019, 14(2), P. 420–429.
20. Drozdov S.A., Nazarov V.G., Nozdrachev S.A., Rudyak Yu.V., Rytikov G.O. The polymer composites morphological structure simulation. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(1), P. 137–145.
21. Petrushin V.N., Rudyak Y.V., Rytikov G.O. The holistic method of the surface structure characterization. Proceedings of “2016 14th International Baltic Conference on Atomic Layer Deposition (BALD 2016)”. St. Petersburg, Russia, 2–4 October 2016, P. 15–19.
22. Nazarov V.G., Doronin F.A., Evdokimov A.G., Rytikov G.O., Stolyarov V.P. Oxyfluorination-Controlled Variations in the Wettability of Polymer Film Surfaces. Colloid Journal, 2019, 81, P. 146–157.
Review
For citations:
Rudya Yu.V., Doronin F.A., Rytikov G.O., Filyugina E.K., Nazarov V.G. Nanotexture effect of the fiber surface on the sorption capacity of nonwoven fabrics. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):553–564. https://doi.org/10.17586/2220-8054-2020-11-5-553-564