Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Spin-glass transition in porous spheres BiFeO3

https://doi.org/10.17586/2220-8054-2020-11-5-565-571

Abstract

Magnetic properties of porous spheres BiFeO3 have been studied at temperatures ranging from 2 to 300 K. A transition to cluster spin glass state has been detected in the region of about 100 K. The presence of the transition is confirmed by nonlinear variation of coercive force and the appearance of exchange displacement of magnetic hysteresis loops at temperature below 100 K. Temperature dependence of magnetization for zero-field cooled regime exhibit a maximum at some temperature Tm. The function Tm(H) (H is magneic field) changes in accordance with Almeida–Thouless line. The performed measurements of the frequency dependence of AC susceptibility confirm the behavior of spin glass with spin freezing temperature Tf = 116 K. The critical index = 2.5 agrees well with the mean-field theory = 2.0.

About the Authors

A. V. Dmitriev
Institute of Solid State Chemistry, UB RAS
Russian Federation

91, Pervomaiskaya Str., Ekaterinburg, 620990



E. V. Vladimirova
Institute of Solid State Chemistry, UB RAS
Russian Federation

91, Pervomaiskaya Str., Ekaterinburg, 620990



M. A. Semkin
Ural Federal University, Department of Magnetism
Russian Federation

48, Kuibyshev Str., Ekaterinburg



A. V. Korolev
M.N. Mikheev Institute of Metal Physics UB RAS
Russian Federation

18, S. Kovalevskaya Str., Ekaterinburg, 620108



References

1. Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Adv. Materials, 2009, 21, P. 2463–2485.

2. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media. Uspekhi fizicheskikh nauk, 2012, 182, P. 593–620. (in Russian)

3. Tae-Jin Park, Papaefthymiou G.C., et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3nanoparticles. Nano Lett., 2007, 7 (3), P. 766–772.

4. Ederer C., Spaldin N.A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B, 2005, 71, 060401.

5. Carranza-Celis D., Cardona-Rodr´ıguez A., et. al. Control of Multiferroic properties in BiFeO3 nanoparticles. Scientific Reports, 2019, 9, 3182.

6. Sando D., Barthel´ eemy A., Bibes M. BiFeO´ 3 epitaxial thin films and devices: past, present and future. J. Phys.: Condens. Matter, 2014, 26, 473201.

7. Sining Dong, Yiping Yao, et al. Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals. Nanotechnology, 2011, 22, 385701.

8. Manoj Singh K., Prellier W., et al. Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B, 2008, 77, 144403.

9. Fengzhen Huang, Xingyu Xu, et al. The exchange bias behavior of BiFeO3 nanoparticles with natural core-shell structure. Scientific Reports, 2018, 8, 2311.

10. Cazayous M., Gallais Y., et al. Possible Observation of Cycloidal Electromagnons in BiFeO3. Phys. Rev. Lett., 2008, 101, 037601.

11. Jarrier R., Marti X., et. al. Surface phase transitions in BiFeO3 below room temperature. Phys. Rev. B, 2012, 85, 184104.

12. Goswami S., Bhattacharya D. Magnetic transition at ∼150 K in nanoscale BiFeO3. Journal of Alloys and Compounds, 2018, 783, P. 277–282.

13. Lomanova N.A., Tomkovich M.V., et al. Magnetic properties of Bi1−xCaxFeO3−δ nanocrystals. J. Nanopart. Res., 2018, 20 (17), P. 12–17.

14. Komogortsev S.V., Fel’k V.A., Li O.A. The magnetic dipole–dipole interaction effect on the magnetic hysteresis at zero temperature in nanoparticles randomly dispersed within a plane. Journal of Magnetism and Magnetic Materials, 2019, 473 (1), P. 410–415.

15. Guilherme H.F. Melo, Joro P.F. Santos, et al. Correlation between electrospinning parameters and magnetic properties of BiFeO3 nanofibers Electrospinning, 2017, 1, P. 73–86.

16. Lei Wu, Wenbo Sui, et al. One-dimensional BiFeO3 Nanotubes: Preparation, Characterization, Improved Magnetic Behaviors, and Prospects. Applied Surface Science, 2016, 384, P. 368–375.

17. Dmitriev A.V., Vladimirova A.V., et al. Hollow spheres of BiFeO3: Synthesis and properties. Journal of Alloys and Compounds, 2018, 743, P. 654–657.

18. Dmitriev A.V., Vladimirova A.V., et al. Synthesis of hollow spheres of BiFeO3 from nitrate solutions with tartaric acid: Morphology and magnetic properties. Journal of Alloys and Compounds, 2019, 777, P. 586–592.

19. Dmitriev A.V., Vladimirova A.V., et al. Self-Assembly of Hollow Bismuth Ferrite Spheres from Nitrate Solutions. Journal of Electronicmaterials, 2019, 48 (8), P. 4959–4969.

20. Klug H.P., Alexander L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley-Interscience, New York, 1974, 992 p.

21. Selbach S.M., Tybell T., Mari-Ann Einarsrud, Tor Grande. Size-Dependent Properties of Multiferroic BiFeO3 Nanoparticles. Chem. Mater., 2007, 19, P. 6478–6484.

22. Nakamura S., Soeya S., Ikeda N., Tanaka M. Spin-glass behavior in amorphous BiFeOs. J. Appl. Phys., 1993, 74, P. 5652–5657.

23. Martinez B., Obradors X., et al. Low Temperature Surface Spin-Glass Transition in γ-Fe2O3 Nanoparticles. Phys. Rev. Lett., 1998, 80, P. 181–183.

24. Manoj K. Singh, Ram S Katiyar, Prellier W., Scott J.F. The Almeida–Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass? J. Phys.: Condens. Matter, 2009, 21, 042202.

25. Mydosh J.A. Disordered magnetism and spin glasses. J. Magn. Magn. Mater., 1996, 158, P. 606–610.

26. Bedanta S., Kleemann W. Supermagnetism. J. Phys. D: Appl. Phys., 2009, 42, 013001.

27. Mukadam M.D., Yusuf S.M., et al. Dynamics of spin clusters in amorphous Fe2O3. Phys. Rev. B, 2005, 72, 174408.

28. Tholence J.L. On the frequency dependence of the transition temperature in spin glasses. Solid State Commun., 1993, 88, P. 917–921.

29. Hohenberg P.C., Halperin B.I. Theory of Dynamic Critical Phenomena. Rev. Mod. Phys., 1977, 49, P. 435–479.

30. Pimenov A., Mukhin A.A., et al. Possible evidence for electromagnons in multiferroicmanganites. Nat. Phys., 2006, 2, P. 97–100.


Review

For citations:


Dmitriev A.V., Vladimirova E.V., Semkin M.A., Korolev A.V. Spin-glass transition in porous spheres BiFeO3. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):565–571. https://doi.org/10.17586/2220-8054-2020-11-5-565-571

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)