Synthesis of nanostructured hollow microspheres of vanadium (III, V) oxides
https://doi.org/10.17586/2220-8054-2020-11-5-572-577
Abstract
Vanadium oxides V2O5 and V2O3 have been synthesized by ultrasonic spray pyrolysis in the form of nanostructured spherical agglomerates with an average diameter of 0.5–1.5 µm. By changing the synthesis conditions, the vanadium oxidation state and microspheres surface morphology can be varied. The microspheres of V2O5 are formed during aerobic synthesis, while V2O3 microspheres are produced under an atmosphere of argon. An increase in the concentration of the initial solution leads to an increase in both size of V2O5 nanoparticles and the diameters of the V2O5 microspheres. Long-term storage of V2O3 in air results in morphological degradation of the microspheres.
About the Authors
E. V. VladimirovaRussian Federation
Pervomayskaya, 91, Yekaterinburg, 620990
O. I. Gyrdasova
Russian Federation
Pervomayskaya, 91, Yekaterinburg, 620990
A. V. Dmitriev
Russian Federation
Pervomayskaya, 91, Yekaterinburg, 620990
References
1. Mott N.F. Metal-insulator transitions. Taylor@Francis, London, 1990, 294 p.
2. Goodenough J.B. Magnetism and the Chemical Bond. J. Appl. Phys., 1968, 39, P. 403.
3. Carter S.A., Rosenbaum T.F., Honig J.M., and Spalek J. New phase boundary in highly correlated, barely metallic V2O3. Phys. Rev. Lett., 1991, 67, P. 3440.
4. Zhang Y., Fan ., Liu X. et al. Beltlike V2O3@C core-shell-structured composite: design, preparation, characterization, phase transition, and improvement of electrochemical properties of V2O3. Eur. J. Inorg. Chem., 2012, 10, P. 1650–1659.
5. Metcalf P.A. et al. Electrical, structural, and optical properties of Cr-doped and non-stoichiometric V2O3 thin films. Thin Solid Films. 2007, 515(7-8), P. 3421–3425.
6. Weber D. et al. Bixbyite-Type V2O3 - A Metastable Polymorph of Vanadium Sesquioxide. Inorganic Chemistry, 2011, 50(14), P. 6762–6766.
7. Populoh S. et al. The power factor of Cr-doped V2O3 near the Mott transition. Appl. Phys. Lett., 2011, 99(17), P. 3–7.
8. Panaccione G. et al. Bulk electronic properties of V2O3 probed by hard X-ray photoelectron spectroscopy. J. of Electron Spectroscopy and Related Phenomena, 2007, 156-158, P. 64–67
9. Laad M.S., Craco L., Muller E. Orbital-selective insulator-metal transition in V¨ 2O3 under external pressure. Phys. Rev. B., 2006, 73(4), P. 15–21.
10. Zavalij P.Y. and Whittingham M.S. Whittingham. Structure chemistry of vanadium oxides with open frameworks. Acta Cryst., 1999, B55, P. 627–630.
11. Strelcov E., Lilach Y. and Kolmakov A. Gas Sensor Based on Metal–Insulator Transition in VO2 Nanowire Thermistor. Nano Lett., 2009, 9, P. 2322–2326.
12. Krusin-Elbaum L., Newns D. M., Zeng H., Derycke V., Sun J.Z. and Sandstrom R. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature, 2004, 431, P. 672–676.
13. Vavilova E., Hellmann I., Kataev V., Taschner C., B¨ uchner B. and Klingeler R. Magnetic properties of vanadium oxide nanotubes probed by¨ static magnetization and 51V NMR. Phys. Rev. B, 2006, 73, P. 144417(1-7).
14. Chen Zh., Augustyn V., Wen J., Zhang Yu., Shen M., Dunn B. and Lu Yu. M. Shen, B. Dunn and Yu. Lu. High Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites Adv. Mater., 2011, 23, P. 791–799.
15. Dong W., Sakamoto J. and Dunn B. Electrochemical Properties of Vanadium Oxide Aerogelsand Aerogel Nanocomposites. J. Sol-Gel Sci. Technol., 2003, 26, P. 641–644.
16. Yan M., He P., Chen Y., Wang S., Wei Q., Zhao K., Xu X., An Q., Shuang Y., Shao Y., Mueller K.T., Mai L., Liu J., Yang J. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, P. 1703725.
17. Pan J., Li M., Luo Y.Y., Wu H., Zhong L., Wang Q., Li G.H. Synthesis and SERS activity of V2O5 nanoparticles. Appl. Surf. Sci., 2015, 333, P. 34–38.
18. Liu X., Zeng J., Yang H., Zhou K., Pan D. V2O5-based nanomaterials: synthesis and their applications. RSC Adv., 2018, 8(8), P. 4014–4031.
19. Blagojevic V.A., Carlo J.P., Brus L.E., Steigerwald M.L., Uemura Y.J., J.L. Billinge, G. M Luke. Magnetic phase transition in V2O3 nanocrystals. Physical Review B, 2010, 82(9), P. 094453.
20. Mai L.Q., Tian X.C., Xu X., Chang L., Xu L. Nanowire Electrodes for Electrochemical Energy Storage Devices. Chem.Rev., 2014, 114, P. 11828–11862.
21. Asim N., Radiman S., Yarmo M.A., BanayeGolriz M.S. Vanadium pentoxide: Synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater., 2009, 120, P. 397–401.
22. Abd-Alghafour N.M., Ahmed N.M., Hassan Z., Mohammad S.M., Bououdina M., Ali M.K.M. Characterization of V2O5 nanorods grown by spray pyrolysis technique. J. Mater. Sci. - Mater. Electron, 2016, 27, P. 4613–4621.
23. Zhendong Yin, Jie Xu, Yali Ge et al. Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors. Mater. Res. Express, 2018, 5(3), P. 036306.
24. Zhang X.Y., Wang J.G., Liu H.Y., Liu H.Z. and Wei B.Q. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for HighPerformance Lithium-Ion Batteries. Materials, 2017, 10, P. 77–85.
25. Yue Q., Jiang H., Hu Y., Jia G., Li C. Mesoporous single-crystalline V2O5 nanorods assembled into hollow microspheres as cathodematerials for high-rate and long-life lithium-ion batteries. Chem.Commun., 2014, 50, P. 13362–13369.
26. Dmitriev A.V., Vladimirova E.V., Kandaurov M.V., Chufarov, A.Yu., Kellerman D.G. Magnetic properties of powders BiFe0.93Mn0.07O3 powders obtained by ultrasonic spray pyrolysis. Phys. Solid State, 2017, 59, P. 2360–2364.
27. Dmitriev A.V., Vladimirova E.V., Kandaurov M.V., Kellerman D.G., Chufarov A.Yu., Tyutyunnik A.P. Hollow spheres of BiFeO3: Synthesis and properties. Journal of Alloys and Compounds, 2018, 743, P. 654–657.
28. Lyakh O.V., Eismont N.G., Surikov Wad. I., Surikov Val. I. Physical aspects of aging of vanadium (III) oxide. Omsk Scientific Bulletin, 2013, 120(2), P. 8–11.
29. Przesniak-Welenc M., Karczewski J., Smalc-Koziorowska J., Łapinski M., Sadowskia W, and Koscielska B. The influence of nanostructure size on V2O5 electrochemical properties as cathode materials for lithium ion batteries. RSC Adv., 2016, 6(61), P. 55689–55697.
Review
For citations:
Vladimirova E.V., Gyrdasova O.I., Dmitriev A.V. Synthesis of nanostructured hollow microspheres of vanadium (III, V) oxides. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):572–577. https://doi.org/10.17586/2220-8054-2020-11-5-572-577