Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and comparative photocatalytic activity of CuO layers on SiO2 substrates

https://doi.org/10.17586/2220-8054-2020-11-5-601-607

Abstract

Using the thermodynamic and kinetic approaches, it was found that Cu(NH3) complex predominating at 23C spontaneously decomposes at elevated temperatures, forming CuO precipitate in a bulk solution and a layer (CuO||SiO2) on the surface of silica glass. The rates of these heterogeneous processes are fairly well described by the 1st-order reaction of decay of the Cu(NH3)complex. The formation of the CuO precipitate and layer is a two-step kinetic process. The rate of precipitate formation dominates above 65 C while the rate of the layer formation prevails below this value. The CuO||SiO2 material synthesized below 65possesses an optical bandgap of (1.25±0.05) eV, which is smaller compared to the crystals of commercial CuO. The CuO||SiO2 material displays a photocatalytic activity in the reaction of UV-decomposition of benzoquinone-hydroquinone. It was discovered that the photocatalytic activity depends on the thickness of the photocatalyst layer.

About the Authors

E. V. Polyakov
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



R. R. Tzukanov
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



I. V. Volkov
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



L. Yu. Buldakova
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



I. V. Baklanova
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



O. A. Lipina
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



V. P. Zhukov
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



Yu. V. Kuznetsova
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



A. P. Tutyunnik
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



M. A. Maximova
Institute of Solid State Chemistry UB RAS
Russian Federation

91, Pervomaiskaya str., Ekaterinburg, 620990



References

1. Ochiai T., Fujishima A., J. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, P. 247–262.

2. Varshney G., Kanel S.R., Kempisty D.M., Varshney V., Agrawale A., Sahle-Demessie E., Varmac R.S., Nadagouda M.N. Nanoscale TiO2 films and their application in remediation of organic pollutants. Coordination Chemistry Reviews, 2016, 306, P. 43–64.

3. Lai Ch.W., Lee K.M., Juan J.Ch. Chapter 7. Polymeric Nanocomposites for Visible-Light-Induced Photocatalysis. M.M. Khan et al. (eds.). Nanocomposites for Visible Light-induced Photocatalysis. Springer Series on Polymer and Composite Materials. Springer International Publishing AG, 2017.

4. Cheng G. Synthesis and characterisation of CuO nanorods via a hydrothermal method. Micro and Nano Letters, 2011, 6, P. 774.

5. Tuerdi A., Abdukayum A., Chen P. Systhesis of composite photocatalyst based on the ordered mesoporous carbon-CuO nanocomplex. Materials Letters, 2017, 209, P. 235–239.

6. Chuantian Z., Ding, Liming L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 2015, 11, P. 5528–5532.

7. Kakhki R.M., Ahsani F., Mir N. Enhanced photocatalytic activity of CuO-SiO2 nanocomposite based on a new Cu nanocomplex. Journal of Materials Science: Materials in Electronics, 2016, 27, P. 11509–11517.

8. Lim Y.-F., Choi J.J., Hanrath T. Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications. Journal of Nanomaterials, 2012, 2012, P. 1–6.

9. Mokrushin S.G., Kitaev G.A. Experimental investigation into laminar systems. Kolloidnyi Zhurnal, 1957, 19, P. 93.

10. Brodie-Linder N., Audonnet F., Deschamps J., Alba-Simionesco C., Besse R., LeCaer S., Imperor-Clerc M. The key to control Cu II loading´ in silica based mesoporous materials. Microporous and Mesoporous Materials, 2010, 132, P. 518–525.

11. Irwin J.C., Chzhanovski J., Wei T., Lockwood D.J., Wold A. Raman scattering from single crystals of cupric oxide. Physica C, 1990, 166, P. 456–464.

12. Kubelka P., Munk F. An article on optics of paint layers. Zeitschrift fur technische Physik¨ , 1931, 12, P. 593–609.

13. West A. R. Solid State Chemistry and Its Applications. New Jersey, Wiley, 1987, 742 p.

14. Polyakov E.V., Denisova T.A., Maksimova L.G., Zhuravlev N.A., Buldakova L.Yu. Hydrogen and salt forms of tin ferrocyanide as precursors of mixed ferrocyanides. Russian Journal of Inorganic Chemistry, 2000, 45, P. 276–282.

15. Polyakov E.V., Krasilnikov V.N., Gyrdasova O.I., Buldakova L.Yu., Yanchenko M.Yu. Synthesis and photocatalytic activity of quasi-onedimensional (1-D) solid solutions Ti1−XMXO2−2X/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III) and Sm(III), 0 ≤ X ≤ 0.1). Nanosystems: Physics, Chemistry, Mathematics, 2014, 5, P. 553–563.

16. G. Kresse, J. Furthmuller. Vasp the guide. Vasp the guide. Homepage. 2011. (http://cms.mpi.univie.ac.at/vasp/guide/vasp.html).


Review

For citations:


Polyakov E.V., Tzukanov R.R., Volkov I.V., Buldakova L.Yu., Baklanova I.V., Lipina O.A., Zhukov V.P., Kuznetsova Yu.V., Tutyunnik A.P., Maximova M.A. Synthesis and comparative photocatalytic activity of CuO layers on SiO2 substrates. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(5):601–607. https://doi.org/10.17586/2220-8054-2020-11-5-601-607

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)