Supercritical fluid synthesis and possible properties of “cubic graphite”
https://doi.org/10.17586/2220-8054-2020-11-4-408-416
Abstract
We report on supercritical fluid synthesis of an intermediate carbon phase – austite – at a pressure of 180 MPa and temperatures 500–700◦C from soot as a precursor and supercritical carbon dioxide as a solvent. According to the results of electron and X-ray diffractions, spectral measurements and density-functional theory calculations, the observed carbon phase is proved to be cubic with a lattice parameter value of 8.96±0.05 A and a˚ possible structural type as for KFI zeolite.
Keywords
About the Authors
A. V. PokropivnyUkraine
Kyiv
A. N. Enyashin
Russian Federation
Ekaterinburg
A. S. Smolyar
Ukraine
Kyiv
V. A. Kuts
Ukraine
Kyiv
V. G. Gurin
Russian Federation
Kyiv
S. A. Antipov
Ukraine
Kyiv
P. M. Silenko
Ukraine
Kyiv
Yu. M. Solonin
Ukraine
Kyiv
References
1. Holmes J.D., Lyons D.M., Ziegler K.J. Supercritical fluid synthesis of metal and semiconductor nanomaterials. Chemistry Eur. J., 2003, 23, P. 2144–2150.
2. Smolyar A.S., Barcholenko V.A., Kuts V.A., Gurin V.G., Archipov A.P., Maloshtan S.A., Razvadovsky N.A., Svyato V.P., Klimovich A.P. UA patent No 98084606. Bulletin No 6, 2002.
3. Aust R.B., Drickamer H.C. Carbon: a new crystalline phase. Science, 1963, 140, P. 817; Deleted pattern No 18-311.
4. Bandy F.P., Kasper J.S. Hexagonal diamond – a new form of carbon. J. Chem. Phys., 1967, 46, P. 3437–3446.
5. Pokropivny V.V., Ivanovsky A.L. New nanoforms of carbon and boron nitride. Russ. Chem. Rev., 2008, 77, P. 837–874.
6. Fedoseev D.V., Deryagin B.V., Varnin V.P., Vnukov S.P., Teremetskaya I.G., Polyanskaya N.D. Polymorphism in carbon-boron nitride systems. Dokl. Akad. Nauk SSSR, 1976, 228, P. 371–374.
7. Smolyar A.S., Sozin Yu.I., Barholenko V.A., Maloshtan S.N., Kuts V.A., Gurin V.G., Arhipov A.P., Gerasimov A.Yu., Razvadovskii N.A., Titenko A.N.Fluid synthesis of carbon phases. J. Superhard Mater., 2002, 2, P. 79.
8. Shterenberg I., Bogdanova S. Influence of nickel on graphitization of carbon materials at high-pressures and temperatures. Inorg. Mater., 1979, 15, P. 632–636.
9. Shumilova T.G., Kablis G.N., Pushkarev E.V. Typomorphic features of graphite mineralization of probable alternative high-pressure sources of diamond: cubic graphite. Dokl. Earth Sciences, 2002, 387, P. 958–961.
10. Wild R., Schellenbaum R. X-ray diffraction studies of mineral matter in North Dakota Lignite. Proc. North Dakota Acad. Sci., 1951, 5, P. 40–42.
11. Pokropivny V.V., Pokropivny A.V. Structure of “cubic graphite”: simple cubic fullerite C24. Phys. Solid State, 2004, 46, P. 392–394.
12. Pokropivny A.V. X-ray diffraction analysis of austite (cubic graphite), a novel carbon [C24]-LTA zeolite. Physics Low.-Dim. Struct., 2006, 2, P. 64–68.
13. Pokropivny A.V., Volz S. C8 phase: supercubane, tetrahedral, BC-8 or carbon sodalite? Phys. Status Sol. B, 2012, 249, P. 1704–1708.
14. Pokropivny A.V. Structure of the boron nitride E-phase: diamond lattice of B12N12 fullerenes. Diam. Relat. Mat., 2006, 15, P. 1492–1495.
15. Pokropivny A.V., Volz S. Hybrid porous nanotube crystal networks for nanostructured device applications. J. Mater. Sci., 2013, 48, P. 2953– 2960.
16. Pokropivny V.V., Smolyar A.S., Pokropivny A.V. Fluid synthesis and structure of a new boron nitride polymorph-hyperdiamond fulborenite B12N12 (E phase). Phys. Solid State, 2007, 49, P. 591–598.
17. Baburin I.A., Proserpio D.M., Saleev V.A., Shipilova A.V. From zeolite nets to sp3 carbon allotropes: a topology-based multiscale theoretical study. Phys. Chem. Chem. Phys., 2015, 17, P. 1332–1338.
18. Hu M., Zhao Z., Tian F., Oganov A.R., Wang Q., Xiong M., Fan C., Wen B., He J., Yu D., Wang H.-T., Xu B., Tian Y. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci. Rep., 2013, 3, 1331.
19. Belenkov E.A., Brzhezinskaya M.M., Greshnyakov V.A. Novel carbon diamond-like phases LA5, LA7 and LA8. Diam. Relat. Mat., 2014, 50, P. 9–14.
20. Belenkov E.A., Greshnyakov V.A. Diamond-like phases formed from fullerene-like clusters. Phys. Solid State, 2015, 57, P. 2331–2341.
21. Belenkov E.A., Brzhezinskaya M.M., Greshnyakov V.A. Crystalline structure and properties of diamond-like materials. Nanosystems: Physics Chemistry Mathematics, 2017, 8, P. 127–136.
22. Belenkov E.A., Greshnyakov V.A. Modeling of phase transitions of graphites to diamond-like phases. Phys. Solid State, 2018, 60, P. 1294–1302.
23. Greshnyakov V.A., Belenkov E.A. Structures of diamond-like phases. J. Exp. Theor. Physics, 2011, 113, P. 86–95.
24. Kvashnina Y.A., Kvashnin D.G., Kvashin A.G., Sorokin P.B. New allotropic forms of carbon based on D-60 and D-20 fullerenes with specific mechanical characteristics. JETP Lett., 2017, 105, P. 419–425.
25. Kvashnina Y.A., Kvashnin A.G., Popov M.Y., Kulnitskiy A.A., Perezhogin I.A., Tyukalova E.V., Chernozatonskii L.A., Sorokin P.B., Blank
26. V.D. Toward ultra-incompressible carbon materials: computational simulation and experimental observation. J. Phys. Chem. Letters, 2015, 6, P. 2147–2152.
27. Kvashnina Y.A., Kvashnin A.G., Sorokin P.B. Investigation of new superhard carbon allotropes with promising electronic properties. J. Appl. Phys., 2013, 114, P. 183708.
28. Ordejon P., Artacho E., Soler J.M., Self-consistent order-N denisity-functional calculations for very large systems. Phys. Rev. B, 1996, 53, P. R10441.
29. Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter, 2002, 14, P. 2745–2780.
30. Porezag D., Frauenheim T., Kohler T., Seifert G., Kaschner R., Construction of tight-binding-like potentials on the basis of density-functional¨ theory: application to carbon. Phys. Rev. B, 1995, 51, P. 12947.
31. Koster A.M., Flores R., Geudtner G., Goursot A., Heine T., Patchkovskii S., Reveles J.U., Vela A., Salahub D.,¨ deMon, Version 1.2; NRC: Ottawa, 2004.
32. Caglioti G., Paoletti A., Ricci F.P. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instr. Meth., 1958, 3, P. 223– 228.
33. Baerlocher Ch., McCusker L.B., Olson D.H. Atlas of zeolite framework types. Elsevier, Amsterdam, 2007, 404 p. [33] http://www.ioffe.ru/SVA/NSM/Semicond/Diamond/
34. Pugh S.F. Relations between the elastic moduli and plastic properties of polycrystalline pure metals. Phil. Mag., 1954, 45, P. 822–843.
35. Zener C.M., Siegel S. Elasticity and anelasticity of metals. J. Phys. Chem., 1949, 53, P. 1468.
36. Teter D.M. Computational alchemy: the search for new superhard materials. MRS Bull, 1998, 23, P. 22–27.
37. Chen X.Q., Niu H., Li D., Li Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011, 19, P. 1275– 1281.
38. Shumilova T.G. Mineralogy of natural carbon (in Russian). Ural Branch of Russian Academy of sciences, Ekaterinburg, 2003, 316 p.
39. Humphrey W., Dalke A., Schulten K., VMD: visual molecular dynamics. J. Mol. Graphics, 1996, 14, P. 33–38.
Review
For citations:
Pokropivny A.V., Enyashin A.N., Smolyar A.S., Kuts V.A., Gurin V.G., Antipov S.A., Silenko P.M., Solonin Yu.M. Supercritical fluid synthesis and possible properties of “cubic graphite”. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4):408–416. https://doi.org/10.17586/2220-8054-2020-11-4-408-416