Approximate analytical method for finding eigenvalues of Sturm-Liouville problem with generalized boundary condition of the third kind
https://doi.org/10.17586/2220-8054-2020-11-3-275-284
Abstract
The Sturm-Liouville problem is solved for a linear differential second-order equation with generalized boundary conditions of the third kind Generalized boundary conditions consist of a linear combination of the boundary values of a function and its derivative. The coefficients of the linear combination are polynomials of the boundary problem eigenvalue. A method of approximate analytical calculation of boundary problem eigenvalues is proposed The calculation error of an eigenvalue is estimated.
About the Authors
V. D. LukyanovRussian Federation
Kondrat’evsky, 72, St. Petersburg, 195271
D. A. Bulekbaev
Russian Federation
Zhdanovskaya, 13, St. Petersburg, 197198
A. V. Morozov
Russian Federation
Zhdanovskaya, 13, St. Petersburg, 197198
L. V. Nosova
Russian Federation
Zhdanovskaya, 13, St. Petersburg, 197198
References
1. Margolin V.I. Zhabrev V.A., Lukyanov G.N., Tupik V.A. Introduction to Nanotechnologies. Lan’, Saint Petersburg, 2012, 464 p.
2. Voitovich I.D., Korsunsky V.M. Intellectual sensors. BINOMIAL. Knowledge Laboratory, M., 2012, 624 p.
3. Nguyen C.T.-C. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2007, 54, P. 251–270.
4. Basu J., Bhattacharyya T.K. Microelectromechanical resonators for radio frequency communication applications. Microsyst. Technol., 2011, 17, P. 1557–1580.
5. NEMS/MEMS Technology and Devices. Edited by Lynn Khine and Julius M. Tsai. International Conference on Materials for Advanced Technologies (ICMAT 2011), Symposium G: NEMS/MEMS and microTAS, June 26-July 1, Suntec, Singapore, 2011, 242 p.
6. Greenberg Y.S., Paskin Yu.A., Ilichev K.V. Nanomechanical resonators. Successes of Physical Sciences, 2012, 4(182), P. 408–436.
7. Mukhurov N.I., Efremov G.I. Electromechanical micro-devices. Belarusian. Navuka, Minsk, 2012, 257 p.
8. Van Beek, J.T.M., Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng., 2012, 22, P. 13001.
9. Nguyen, C.T.-C. MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Commun. Mag., 2013, 51, P. 110–119.
10. Uranga A., Verd J., Barniol N. CMOS–MEMS resonators: From devices to applications. Microelectron. Eng., 2015, 132, P. 58–73.
11. Abdolvand R., Bahreyni B., Lee J., & Nabki F. Micromachined Resonators: A Review. Micromachines, 2016, 7(9), 2016, P. 160–213.
12. Ali W.R., Prasad M. Piezoelectric MEMS based acoustic sensors: A review. Sensors and Actuators A: Physical. Sensors and Actuators A., 2020, 301, P. 2–31.
13. Lyshevski S.E. MEMS and NEMS Systems, Devices, and Structures. CRC Press, New York, 2002, 461 p.
14. Kolmakov A.G., Barinov S.M., Alymov M.I. Basis of technologies and application of nanomaterials. Fizmatlitis., M.,2012, 208 p.
15. Zaytsev V.F., Polyanin A.D. Handbook on Ordinary Differential Equations. Fizmatlit, M., 2001, 576 p.
16. Collatz L. Tasks for own values (with technical annexes). Science, M., 1968, 504 pp.
17. Vibrations in engineering: Reference. T. 1. Fluctuations of linear systems. Under Ed. V.V. Bolotina. Mashinostroenie, M., 1978, 352 p.
18. harles T. Fulton Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proceedings of the Royal Society of Edinburgh, 1977, 77 A, P. 293–308.
19. Shkalikov A.A. Boundary problems for ordinary differential equations with parameter under boundary conditions. Works of I.G. Petrovsky Seminar, 1983, 9, P. 190–229.
20. Titchmarsh E.C. Eigenfunction expansions associated with second order differential equations. V. 1. Oxford Univ. Press, London, 1962, 203 p.
21. Naimark M.A. Linear differential operators. Science, M., 1969, 528 p.
22. Lukyanov V.D., Nosova L.V., Bogorodsky A.V. et al. Approximate solution to the Sturm-Liuville problem with complicated boundary conditions. Sea intellectual technologies, 2019, 1(43), P. 142–146.
23. Beckman I.N. Mathematics of Diffusion. OntoPrint, M., 2016, 400 p.
24. Koshlyakov N.S., Gliner E.B., Smyrnov M. M. Differential equations of mathematical physics. Fizmatgiz, M., 1962, 768 p.
25. Lukyanov V.D. On the construction of an interpolation-approximation polynomial. Nanosystems: physics, chemistry, mathematics. 2012, 3(6), P. 5–15.
26. Akhtyamov A.M. Theory of identification of edge conditions and its application. Fizmatlit, M., 2009, 272 p.
27. Akhtyamov A. M., Ilgamov M. A. Review of research on identification of local defects of rods. Problems of machine building and reliability, 2020, 2, P. 3–15.
Review
For citations:
Lukyanov V.D., Bulekbaev D.A., Morozov A.V., Nosova L.V. Approximate analytical method for finding eigenvalues of Sturm-Liouville problem with generalized boundary condition of the third kind. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):275–284. https://doi.org/10.17586/2220-8054-2020-11-3-275-284