Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation

https://doi.org/10.17586/2220-8054-2020-11-3-316-323

Abstract

The single-phase solid solutions Ba4Y3F17:Yb:Eu with fluorite-type structure were synthesized by co-precipitation from aqueous solution technique. The average particle size was approximately 100 nm without agglomeration. The sensitized down-conversion luminescence of Yb3+ ions was observed under 296 nm excitation. The quantum yield of Yb3+ luminescence was found to reach avalue of 0.4 % for samples with Eu/Yb ratios of 0.1/1.0 and 0.1/10.0.

About the Authors

S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation


A. S. Nizamutdinov
Kazan Federal University
Russian Federation


E. I. Madirov
Kazan Federal University
Russian Federation


V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation


K. S. Tsoy
Kazan Federal University
Russian Federation


А. R. Khadiev
Kazan Federal University
Russian Federation


A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation


V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation


S. S. Kharintsev
Kazan Federal University
Russian Federation


V. V. Semashko
Kazan Federal University
Russian Federation


References

1. Weber E.R. Photovoltaics moving into the terawatt age. Proc. SPIE, Next Generation Technologies for Solar Energy Conversion VIII, 2017, 10368, 1036803.

2. Lehr J., Langenhorst M., et al. Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Solar Energy Materials and Solar Cells, 2020, 208, 110367 P. 1–9.

3. Im J.-H., Lee C.-R., et al. 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3, P. 4088–4093.

4. Han G., Zhang S., et al. Towards high efficiency thin film solar cells. Prog. Mater. Sci., 2017, 87, P. 246–291.

5. Huang X., Han S., Huang W., Liu X., Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42, P. 173–201.

6. Moraitis P., Schropp R.E.I., Sark W.G.J.H.M. Nanoparticles for luminescent solar concentrators – a review. Opt. Mater., 2018, 84, P. 636–645.

7. Green M.A., Bremner S.P. Energy conversion approaches and materials for high efficiency photovoltaics. Nat. Mater., 2017, 16, P. 23–34.

8. Trupke T., Green M.A., Wurfel P. Improving solar cell efficiencies by down-conversion of high-energy photons.¨ J. Appl. Phys., 2002, 92, P. 1668–1674.

9. Yu P., Yao Y., et al. Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci. Rep., 2017, 7, P. 7696.

10. Fang D., Zhang X., et al. Application of bidirectional (up and down)-conversion luminescence material (GdBO3:Yb3+/Tb3+) in CdSe0.4S0.6 quantum dot-sensitized solar cells. Opt. Mater., 2019, 88, P. 80–90.

11. Gu H., Wang J., et al. The core-shell-structured NaYF4:Er3+, Yb3+@NaYF4:Eu3+ nanocrystals as dual-mode and multifunctional luminescent mechanism for high-performance dye-sensitized solar cells. Mater. Res. Bull., 2018, 108, P. 219–225.

12. Buarque J.M.M., Manzani D., et al. SiO2–TiO2 doped with Er3+/Yb3+/Eu3+ photoluminescent material: a spectroscopy and structural study about potential applicationfor improvement of the efficiency on solar cells. Mater. Res. Bull., 2018, 107, P. 295–307.

13. Rajesh D., Dousti M.R., Amjad R.J., Camargo A.S.S. Quantum cutting and upconversion investigations in Pr3+/Yb3+ co-doped oxyfluorotellurite glasses. J. Non-Cryst. Solids, 2016, 450, P. 149–155.

14. Kuznetsov S.V., Nizamutdinov A.S., et al. Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, P. 190–198.

15. Li T., Li Y., et al. Novel Ba(Gd1−xYx)0.78F5: 20 mol % Yb3+, 2 mol % Tm3+ (0 < x < 1.0) solid solution nanocrystals: A facile hydrothermal controlled synthesis, enhanced upconversion luminescent and paramagnetic properties. J. Alloys Comp., 2018, 740, P. 1204– 1214.

16. Karbowiak M., Cichos J. Does BaYF5 nanocrystals exist? The BaF2–YF3 solid solution revisited using photoluminescence spectroscopy. Journal of Alloys and Compounds, 2016, 673, P. 258–264.

17. Fedorov P.P., Kuznetsov S.V., et al. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian J. of Inorg. Chem., 2011, 56, P. 1525–1531.

18. Kuznetsov S.V., Proydakova V.Yu., et al. Synthesis and quantum yield investigations of the Sr1−x−yPrxYbyF2+x+y luminophores for photonics. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 663–668.

19. Kuznetsov S.V., Morozov O.A., et al. Ca1−x−yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, P. 259–265.

20. Kuznetsov S.V., Nizamutdinov A.S., et al. Synthesis and Luminescence of Sr1−x−yYbxEuyF2+x+y. Solid Solutions for Photonics. Inorganic Materials, 2019, 55, P. 1031–1038.

21. Yasyrkina D.S., Kuznetsov S.V., et al. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1−x−yYbxEryF4. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4, P. 648–656.

22. Kuznetsov S.V., Fedorov P.P., et al. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. Russian Journal of Inorganic Chemistry, 2010, 55, P. 484–493.

23. Semashko V.V. Problems in searching for new solid-state UV- and VUV active media: the role of photodynamic processes. Phys. of Solid State, 2005, 47, P. 1507–1511.

24. Van der Voort D., Dirksen G.J., Blasse G. Luminescence study of Eu3+–O2− associates in fluorides: CaF2, RbCdF3, and RbCaF3. J. Phys. Chem. Solids, 1992, 53, P. 219–225.

25. Dwivedi Y., Zilio S.C. Infrared cascade and cooperative multicolor upconversion emissions in Y8V2O17:Eu:Yb nanophosphors. Opt. Express, 2013, 21, P. 4717–4727.


Review

For citations:


Kuznetsov S.V., Nizamutdinov A.S., Madirov E.I., Voronov V.V., Tsoy K.S., Khadiev А.R., Yapryntsev A.D., Ivanov V.K., Kharintsev S.S., Semashko V.V. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(3):316–323. https://doi.org/10.17586/2220-8054-2020-11-3-316-323

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)